• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A genetic variation may increase tuberculosis susceptibility

Bioengineer by Bioengineer
July 21, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, July 21, 2017-Researchers have shown that a single nucleotide change in a gene that affects production of hepcidin–a peptide involved in inflammation, immunity, and control of iron levels–is associated with greater susceptibility to extrapulmonary tuberculosis. Individuals with this single nucleotide polymorphism (SNP) make significantly less hepcidin in response to infection by Mycobacterium tuberculosis, as reported in Genetic Testing and Molecular Biomarkers, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Genetic Testing and Molecular Biomarkers website until August 18, 2017.

Li Liang, Jun Yue, Li-rong Liu, Min Han, Liu-lin Luo, and Heping Xiao, Tongji University School of Medicine, Shanghai; Huijuan Liu, Chinese Academy of Medical Sciences and Peking Union Medical College, TianJin; and Yan-lin Zhao, Chinese Center for Disease Control and Prevention, Beijing, China, concluded that the SNP in the hepcidin promoter gene may play a critical role in susceptibility to tuberculosis affecting organs other than the lungs, but not pulmonary tuberculosis. The researchers propose that decreased hepcidin production in response to infection and inflammation reduces the ability of macrophages to destroy M. tuberculosis, which then enter the circulation and spread the infection from the lungs to other areas of the body. They present their findings in the article entitled "Association of Single Nucleotide Polymorphism in the Hepcidin Promoter Gene with Susceptibility to Extrapulmonary Tuberculosis."

"This is a potentially important finding in the realm of human susceptibility to infectious disease, which is a greatly under-studied area of research and one that GTMB has chosen to highlight," says Genetic Testing and Molecular Biomarkers Editor-in-Chief Garth D. Ehrlich, PhD, FAAAS, Professor of Microbiology and Immunology, Executive Director, Center for Genomic Sciences and Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel College of Medicine (Philadelphia, PA).

###

About the Journal

Genetic Testing and Molecular Biomarkers is an authoritative peer-reviewed journal published 12 times per year online with open access options and in print that reports on all aspects of genetic testing, including molecular and biochemical based tests and varied clinical situations; ethical, legal, social, and economic aspects of genetic testing; and issues concerning effective genetic counseling. Tables of content and a free sample issue may be viewed on the Genetic Testing and Molecular Biomarkers website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy and OMICS: A Journal of Integrative Biology. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc. 140 Huguenot Street, New Rochelle, NY 10801-5215 http://www.liebertpub.com Phone (914) 740-2100 (800) M-LIEBERT Fax (914) 740-2101

Media Contact

Kathryn Ryan
[email protected]
914-740-2250
@LiebertPub

http://www.liebertpub.com

Original Source

http://www.liebertpub.com/global/pressrelease/a-genetic-variation-may-increase-tuberculosis-susceptibility/2222/ http://dx.doi.org/10.1089/gtmb.2016.0300

Share14Tweet7Share2ShareShareShare1

Related Posts

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

September 11, 2025
Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

Turning Noise into Power: Unveiling the Symmetric Ratchet Motor Breakthrough

September 11, 2025

Innovative Protein Sources for Dairy Cattle Nutrition

September 11, 2025

Scientists Identify Astrocytic “Brake” That Inhibits Spinal Cord Repair

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phenazines Impact Microbiomes by Targeting Topoisomerase IV

Social Exposome Links to Dementia in Latin America

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.