• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A gene required for addictive behavior

Bioengineer by Bioengineer
July 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Heidelberg, 12 July 2018 – Cocaine can have a devastating effect on people. It directly stimulates the brain's reward center, and, more importantly, induces long-term changes to the reward circuitry that are responsible for addictive behaviors. Alban de Kerchove d'Exaerde from the Université Libre de Bruxelles, Belgium, and his colleagues have now uncovered that a gene called Maged1 plays a crucial role in controlling these pathological changes. This finding, published today in EMBO Reports, opens the door to further investigations into the molecular mechanisms underlying addiction-associated adaptations in the brain.

Maged1 is a member of a family of genes that first gained attention because they are active in tumors. However, Maged1 also functions in the brain and has been shown to play a role in neural fating and response to antidepressants. Moreover, activation of the Maged1 gene is altered by chronic cocaine treatment. Hence, de Kerchove d'Exaerde and colleagues set out to investigate whether Maged1 plays a role in cocaine addiction.

Every animal, including humans, feels pleasure when engaging in certain behaviors, such as eating, drinking or procreating. Rewarding stimuli lead to the release of dopamine from the ventral tegmental area (VTA) of the brain to other brain regions that are connected to the VTA, mainly in the Nucleus Accumbens (NAc), the hub of the reward system. Cocaine directly affects the reward system by blocking the removal of dopamine from the synapses, leading to a dopamine surge that over-activates the circuitry. This excess of dopamine induces long-lasting changes in the brain, eventually leading to addiction.

Some of the cocaine-induced changes occur in the prefrontal cortex. In healthy animals, the prefrontal cortex controls behaviors such as inhibitory control and emotion regulation. Alterations in these structures after cocaine abuse are thought to mediate many of the symptoms that characterize addiction such as drug-seeking, loss of control and poor decision making.

De Kerchove d'Exaerde and colleagues observed that mice lacking the Maged1 gene were entirely unresponsive to cocaine and that the release of dopamine in the NAc is diminished. They did not show any reaction normally observed after cocaine treatment, such as drug sensitization, an increased effect of the drug following repeated doses or addictive behavior like seeking up places where the animal expects a cocaine reward or auto-administration of the drug. In a subsequent set of experiments, the researchers scrutinized the role of Maged1 in different brain areas and found that it is specifically required in the prefrontal cortex and not in the neurons producing dopamine in the VTA for the development of cocaine sensitization and dopamine release.

Only very few mutations are known to induce a complete lack of behavioral response to cocaine. Other members of this small group are established components of the reward system. Maged1 thus serves as a promising new entry point into the analysis of the mechanisms underlying drug addiction.

###

Deletion of Maged1 in mice abolishes locomotor and reinforcing effects of cocaine.

Jean-François De Backer, Stéphanie Monlezun, Bérangère Detraux, Adeline Gazan, Laura Vanopdenbosch, Julian Cheron, Giuseppe Cannazza, Sébastien Valverde, Lídia Cantacorps, Mérie Nassar, Laurent Venance, Olga Valverde, Philippe Faure, Michele Zoli, Olivier De Backer, David Gall, Serge N. Schiffmann and Alban de Kerchove d'Exaerde

Read the article: doi: 10.15252/embr.201745089

Media Contact

Tilmann Kiessling
[email protected]
49-160-901-93839
@EMBOcomm

http://www.embo.org

http://www.embo.org/news/press-releases/2018/a-gene-required-for-addictive-behavior

Related Journal Article

http://dx.doi.org/10.15252/embr.201745089

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Impact of Sex Differences on Health: A Review

October 13, 2025
Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025

Immunomodulatory Effects of Lacticaseibacillus casei Exopolysaccharides

October 12, 2025

Brainstem Connectivity Differences by Sex and Menopause

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1228 shares
    Share 490 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pediatric Drug Trials in China: Completed vs. Discontinued

Wafer-Scale Fabrication of 2D Microwave Transmitters

Evaluating Pharmacist Prescribing for Skin Condition Management

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.