• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A fish story with a human tell

Bioengineer by Bioengineer
February 17, 2022
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at University of California San Diego School of Medicine and in Japan have used an ancient fish to reel in new insights about human biology and, in particular, how and why a widely used medication works to abort pregnancies (in people, not fish). 

Elephant Shark

Credit: Michael Baker, UC San Diego Health Sciences

Researchers at University of California San Diego School of Medicine and in Japan have used an ancient fish to reel in new insights about human biology and, in particular, how and why a widely used medication works to abort pregnancies (in people, not fish). 

The findings published in the February 11, 2022 online issue of ACS Pharmacology & Translational Science.

The elephant shark (Callorhinchus milii) is an unusual looking and uncommon animal model. Known by several names, such as ghost shark, elephant fish and silver trumpeter, the species is found in waters off southern Australia. The smooth-skinned, cartilaginous fish grows to a maximum size of four feet and poses no threat to humans. Their distinctive hoe-shaped, proboscis-like snout is used to detect prey, primarily shellfish and bottom-dwelling invertebrates, through movement and weak electrical fields.

But it’s a different attribute that makes elephant sharks suitable for certain kinds of research: They belong to the oldest group of jawed vertebrates and have the slowest evolving genome of all known vertebrates, which make them ideal for investigating how some biological systems have evolved in bony vertebrates, including humans. The latest study, comparing progesterone receptor (PR) activation in elephant sharks and humans, provides insights in how steroid activation evolved in the latter, and why it works the way it does today.

Progesterone is a hormone that, in women, regulates the menstrual cycle, preparation for conception and maintaining a pregnancy. The effects of progesterone are mediated by its nuclear receptor, PR. Researchers found that PR activation in elephant sharks requires a different mix of hormones and steroids than PR activation in humans, with the latter requiring fewer but more specific hormonal and steroidal triggers. 

More interestingly, they discovered that RU486, a medically approved clinical compound that blocks or terminates pregnancy in humans and is commonly called “the abortion pill,” does not have the same effect in elephant sharks. It does not inhibit progesterone activation of elephant shark PR. 

The findings, said senior author Michael Baker, PhD, research professor at UC San Diego School of Medicine, illuminate the divergent evolutionary paths of fish and humans, and offer insight about how other more popular animal models, specifically zebrafish, might be problematic when attempting to parse the pathology of endocrine disruption (when natural or manmade chemicals mimic or interfere with hormones that regulate development, reproduction and other basic functions) or develop new drugs.  

Co-authors include: Xiaozhi Lin, Shigeho Ijiri and Yoshinao Katsu, Hokkaido University, Japan; and Wataru Takagi and Susumu Hyodo, University of Tokyo

# # #



Journal

ACS Pharmacology & Translational Science

DOI

10.1021/acsptsci.1c00191

Article Publication Date

11-Feb-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Habitat Conditions on Anopheles Larvae in Osun

September 3, 2025

Tracing Leaf Metabolism: Linking Photorespiration and One-Carbon Flux

September 3, 2025

Decoding Kazakhstan Soybean Genetics via Whole Genome Sequencing

September 3, 2025

Exploring Centipede Forcipules: Structure and Strength

September 3, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Method Enhances Incomplete Multigranulation Three-Way Regions

Unlocking Value: Extracting Compounds from Spent Coffee

Increased Extracellular BAG3 Marks Early Systemic Sclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.