• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A fish of all flavors

Bioengineer by Bioengineer
June 8, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Okayama University

Receptors are how the body senses its environment. Upon the binding of a ligand, a receptor will initiate a chain of events that elicits a response. Our olfactory system depends on approximately 400 receptors to give us our sense of smell. Taste, however, operates with a much smaller number: The combination of only three members of the taste receptor type 1 (T1r) family can detect a wide range of sweet and savory flavours in humans.

"T1r heterodimers can perceive most sweet and umami taste substances," says Prof. Junichi Takagi of Osaka University. "To understand this perception, we looked at the atomic structure of the heterodimer."

Our bodies sense a flavour when an amino acid of the food binds to a heterodimer of two T1r members. Takagi is an expert of structural biology who studies the physical conformations of receptors upon binding to their ligands.

"The lock-and-key theory explains most ligand-receptor bindings. T1r is unusual because this theory does not seem to apply. We thought it would make an interesting research study."

Takagi was approached by Prof. Atsuko Yamashita at Okayama University who had been studying the T1r2-T1r3 heterodimer of medaka fish for years. This heterodimer binds to a wide range of amino acids for the perception of savory flavours. To measure the structure at the atomic level, they used Takagi's expertise as well as the synchrotron radiation equipment at RIKEN SPring-8 in Japan.

The research team found the heterodimer structure was approximately the same regardless of the amino acid bound, but the affinity for the amino acid was ensured together with the shell-structured water molecules around the amino acid. This characteristic could explain how a single heterodimer can bind to an array of ligands.

"We found the space in which the ligand binds T1r2 is much bigger than the ligand itself. This larger space could account for the structured water," Yamashita said. "The space in lock-and-key receptors is much smaller."

A similar property is found in receptors that pass different types of drugs, suggesting this mechanism may be constant for non-specific receptors.

Although formation of the heterodimer is necessary for perception, the findings indicated that T1r2 was responsible for detecting different amino acids and that binding to T1r3 did not have a direct role in recognizing flavours.

For preparation reasons of the receptors, the group chose to study the medaka fish T1r2-T1r3 heterodimer over the human version. Yet, because the T1r family is universal in higher-levels animals, these findings should make an informative model for taste sensation in humans.

###

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2017/20170523_1 http://dx.doi.org/10.1038/ncomms15530

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Male-Biased Immune Changes in Late-Onset Preeclampsia

Male-Biased Immune Changes in Late-Onset Preeclampsia

December 24, 2025
blank

Mitochondrial Recombination Fuels Rapid Fish DNA Evolution

December 24, 2025

Immune Response Differences Influence Parkinson’s Disease Progression

December 24, 2025

Unlocking Xiangyang Black Pig Genetics Through Resequencing

December 24, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI-Powered Essay Scoring: Deep Learning Meets IoT

Computer Vision Syndrome: Impact on Nursing Students’ Sleep

Phosphorylation Patterns in TCM Syndromes of Fatigue

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.