• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A display that completely blocks off counterfeits

Bioengineer by Bioengineer
January 21, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Despite the anticounterfeiting devices attached to luxury handbags, marketable securities, and identification cards, counterfeit goods are on the rise. There is a demand for the next-generation anticounterfeiting technology – that surpasses the traditional ones – that are not easily forgeable and can hold various data.

A POSTECH research team, led by Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering, Ph.D. candidates Chunghwan Jung of the Department of Chemical Engineering and Younghwan Yang of the Department of Mechanical Engineering, have together succeeded in making a switchable display device using nanostructures that is capable of encrypting full-color images depending on the polarization of light. These findings were recently published in Nanophotonics.

The new device developed by the research team was produced with a microstructure about one thousand times thinner than a strand of hair which is called a metasurface. It is known that various colors can be expressed through a uniformly arranged microstructures within the metasurface. Because the microstructures produced this time have very small pixels, they boast high resolution (approximately 40,000 dpi) and wide viewing angle while being thin, which allows it to be produced in the form of stickers.

In addition, unlike previous studies that focused on the expression of various colors, in this study, the on and off states can be adjusted according to the polarization of the incident light. This new device displays full-color images during the on state and shows no images in the off state.

Besides having the ability to turn on and turn off an image, the device can switch between different images. Specifically, by arranging three consecutive nanostructures, it achieves higher colorization rate than the previous studies. The researchers properly configured a total of 125 types of structures to encode a full-color image and proved through experiments that it completely turns off according to the polarization.

This feature can be utilized in real life as an anti-forgery device. For example, it can be designed into a security label that appears to be a simple color image to the naked eye, but reveals the serial number when a special filter is used. Moreover, by utilizing its ultrahigh resolution feature and inserting high-capacity data security algorithm, it can be used as a new security device that can replace the traditional labeling method.

Chunghwan Jung, the first author of the paper, commented, “This new device is practically impossible to forge because it requires an electron microscope with magnification capacity of several thousand and a nanometer-scale production equipment.”

“This device is an ultra-high-resolution device-type display that can turn on and turn off full-color images according to the polarization component of the incident light,” remarked the corresponding author Professor Junsuk Rho who led the study. “These displays can store multiple images simultaneously and can be applied to in optical cryptography.”

###

This research was conducted with the support from the Samsung Research Funding & Incubation Center for Future Technology.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/a-display-that-completely-blocks-off-counterfeits/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1515/nanoph-2020-0440

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsHardwareMechanical EngineeringNanotechnology/MicromachinesPolymer ChemistryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotics’ Impact on Smoking-Related Mental Health and Metabolism

Microbiota-Bile Acid Axis Drives Bladder Injury

Plasma Protein Profiling Detects Cancer in Symptomatic Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.