• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro

Bioengineer by Bioengineer
December 22, 2023
in Biology
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Non-human primates (NHPs) have a high degree of similarity to humans compared to other animal models. These similarities manifest at the genetic, physiological, socio-behavioral, and central nervous system levels, making NHPs uniquely suitable for research into stem cell therapy and increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey.

Figure 1

Credit: Junmo Wu, Yu Kang, Xiang Luo, Shaoxing Dai, Yuxi Shi, Zhuoyao Li, Zengli Tang, Zhenzhen Chen, Ran Zhu, Pengpeng Yang, Zifan Li, Hong Wang, Xinglong Chen, Ziyi Zhao, Weizhi Ji, Yuyu Niu

Non-human primates (NHPs) have a high degree of similarity to humans compared to other animal models. These similarities manifest at the genetic, physiological, socio-behavioral, and central nervous system levels, making NHPs uniquely suitable for research into stem cell therapy and increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey.

Recently, researchers from Niu Yuyu’s group reported a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. These xeno-free PSCs can be derived from blastocysts, converted from established PSC lines, or generated by somatic cell reprogramming. It was shown that expression of signaling pathways components may increase the potential for chimera formation. Crucially for biomedical applications, it was also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro (Figure 1). The engineered cells retained embryonic and extra-embryonic developmental potential, capable of differentiating into all three germ layers as well as into reproductive germ-like cells, both in vitro and in vivo. Meanwhile, by integrating AkaLuc, a bioengineered luciferase gene, into the genome of monkey stem cells, a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals, was successfully created. Thus, it is allowed to track the proliferation and migration of chimeric cells within the monkey in vivo.

This result lays the foundation for future research on primate organoids and xenotransplantation. At the same time, the chimerism test will not only verify the pluripotency of stem cells but also help to verify the feasibility of organ compensation in NHPs in the future. The study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.



Journal

Protein & Cell

DOI

10.1093/procel/pwad049

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

Long-term in vivo chimeric cells tracking in non-human primate

Article Publication Date

27-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.