• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A chemical investigation of employees — How to distinguish a blue collar from a white one

Bioengineer by Bioengineer
February 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The objective of the investigation was to compare and to analyze hair trace element content in workers of different departments of a petrochemical plant. A total of 75 men working in an office (engineers), and different departments of the petrochemical plant, as well as occupationally non-exposed persons, were examined. Hair trace element levels were analyzed using inductively coupled plasma mass spectrometry.

The office workers were characterized by the highest hair As, Hg, Sn, I, and Si content as compared to the workers of other departments, whereas the level of those elements did not differ significantly from the control values. It is notable that hair Be levels in all employees of petrochemical plant were significantly lower, whereas Se content was significantly higher than that in unexposed controls.

Hair toxic trace element content in workers directly involved in industrial processes did not differ significantly or was lower than that in the control group. At the same time, the highest levels of essential trace elements (Cr, Fe, and I) were observed in employees working in primary oil refining (D1). Hair levels of Co, I, and Li were maximal in persons of sulfur and bitumen-producing division (D4). The lowest levels of both essential and toxic trace elements in hair were detected in employees involved in production of liquefied gas, kerosene, and diesel fuel (D3).

The obtained data demonstrate that involvement in different technological processes in petrochemical complex differentially affect hair trace element content in workers.

###

Media Contact

Valeriya Antonova
[email protected]
7-903-158-9842

http://www.rudn.ru/en/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025

New Metabolic Syndrome Score Validated in Teens

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.