• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A charge-density-wave topological semimetal

Bioengineer by Bioengineer
January 11, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A novel material has been discovered that is characterized by the coupling of a charge density wave with the topology of the electronic structure

IMAGE

Credit: MPI of Microstructure Physics

Topological materials are characterised by unique electronic and physical properties that are determined by the underlying topology of their electronic systems. Scientists from the Max Planck Institutes for Microstructure Physics (Halle) and for Chemical Physics of Solids (Dresden) have now discovered that (TaSe4)2I is the first material in which a charge density wave induces a phase transition between the semimetal to insulator state.

An international team of scientists at the Max Planck Institute for Microstructure Physics, Halle (Saale), the Max Planck Institute for Chemical Physics of Solids in Dresden, Oxford University, Chinese Academy of Sciences, MIT, and Princeton University has discovered the first example of a correlation-driven topological semimetal to insulator phase transition in single crystals of the material (TaSe4)2I. Over the past few years there has been increasing interest in the field of topological materials that display unique electronic and physical properties derived from the underlying topology of their electronic systems. (TaSe4)2I is an unusual material which is known to undergo a structural distortion just below room temperature resulting from a charge density wave. Due to electron correlations the electron gas in the system becomes unstable to a long-range periodic variation of the electron charge density that is intimately coupled to a periodic modulation of the atomic positions in the crystal structure. At the same time this same material has been shown to be a topological metal of a particular type, namely a Weyl semi-metal. This type of topological metal has an electronic system that displays Weyl points where linearly dispersing electronic bands cross one another without forming an energy band gap. These Weyl points in (TaSe4)2I come in pairs, each of which has an opposite chirality, and the authors of the paper show that (TaSe4)2I has 24 pairs of such points with a corresponding enormous so-called chiral charge of +16.

In the study published in the journal Nature Physics, using a set of sophisticated experimental probes of the electronic and crystal structure, the international team, whose members include experimentalists Claudia Felser, Director at the Max Planck Institute for Chemical Physics of Solids , Holger Meyerheim, a researcher, and Stuart Parkin, Director, at the Max Planck Institute for Microstructure Physics, Yulin Chen from Oxford University, and theorist Andrei Bernevig from Princeton University, showed that the topological properties of this compound are intimately connected to the charge density wave, whose wave-vector is derived from the connections between Weyl points of opposite chiral charge.

“It was very challenging, but very exciting, to identify the charge density wave in this material. We needed to use very brilliant x-ray sources available, for example, at the European Synchrotron Radiation Facility, Grenoble, to find the very weak diffraction peak signatures of the charge density wave”, Meyerheim pointed out. As the sample is cooled down strong electron correlations drive the system into the charge density wave state resulting in a transition from a topological Weyl semi-metal to an insulator. At the same time, new physics, reported in a previous paper by the same groups, appears below the transition.

“Who would have believed that we would have found such sophisticated correlated electron physics in such a 1D material”, remarks Felser. This work shows an intimate connection between topology and correlations and provides an avenue to observing condensed-matter realizations of axion electrodynamics – a novel type of coupling between electric and magnetic fields – in a regime that was previously inaccessible. While this is a first example, “our calculations of the electronic structures of many materials makes us certain that there must be many more such systems where correlations and topology intertwine” remarked Bernevig and “we are excited to look for them in experiments”, added Yulin. By manipulating the onset of the charge density wave one can gain direct access to the Topological Weyl Semimetal – Axion Insulator transition. “These materials are a rich playground for potential applications in future electronic devices, a new field of what you might call “topaxtronics!” Stuart Parkin predicts.

###

Original publication

Wujun Shi, Benjamin J. Wieder, Holger L. Meyerheim, Yan Sun, Yang Zhang Yiwei Li, Lei Shen, Yanpeng Qi, Lexian Yang, Jagannath Jena, Peter Werner, Klaus Koepernik, Stuart Parkin, Yulin Chen, Claudia Felser, B. Andrei Bernevig
A charge-density-wave topological semimetal
Nature Physics (2021)
Published 04 January 2021

Media Contact
Prof. Dr. Claudia Felser
[email protected]

Original Source

https://www.mpg.de/16219711/a-charge-density-wave-topological-semimetal

Related Journal Article

http://dx.doi.org/10.1038/s41567-020-01104-z

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

AI Advances Enhance Sustainable Recycling of Livestock Waste

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Crafting Yogurt Using Ants: A Scientific Innovation

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025

Pd-Catalyzed Synthesis of E/Z Trisubstituted Cycloalkenes

October 3, 2025

Hanbat National University Researchers Develop Innovative Method to Enhance Solid Oxide Fuel Cell Efficiency

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.