• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A breakthrough of the mechanism of energy saving in collective swimming

Bioengineer by Bioengineer
November 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: College of Engineering, Peking University

Professor Xie Guangming’s group in the College of Engineering at Peking University has found a simple yet previous unknown rule, explaining how do schooling fish save energy in collective motion. The related work has been published in Nature Communications.

Collective behaviour has drawn a great interest to biologists. A well-known example is that geese fly in “V”-shape or “-“-shape formations in long-distance migrations to reduce drag and thus to save energy. Similarly, as it is a common phenomenon that fish swim in schools, can fish also save energy by swimming in groups? Since Daniel Weihs (1973) proposed a possible energy-saving mechanism for schooling fish, the investigation of energy-saving mechanisms in collective underwater swimming has attracted a long and widespread interest among biologists and roboticists. The former want to reveal the essential mechanisms behind natural phenomena, while the latter want to learn from nature and apply them in the field of engineering. However, it is still not known whether, and if so, how, schooling fish can save energy by interacting with the vortices shed by neighbours.

Professor Xie’s group used the high fidelity bio-inspired robotic fish developed by themselves as a physical experimental model to explore the mechanism. They conducted over 10,000 trials on collective swimming robotic fish in the low-turbulence flow tank platform at the State Key Laboratory of Turbulence and Complex Systems, Peking University. A simple rule was found to explain how the follower can save energy by adjusting its body undulation relative to the leader. In order to verify whether this rule is also adopted by real fish, Professor Xie’s group, together with Professor Iain D. Couzin’s group at the Max-Planck-Institute of Animal Behaviour, Germany, analysed the relationship between the formation and relative undulations of fish bodies at different swim speeds, and verified that this simple rule is also used by real fish for saving energy. In particular, after impairing the vision and lateral line perception in real fish, they found that real fish do not require complex perception and brain processing to adopt this rule, indicating this rule might be universal in biological systems.

These results not only suggest a potential energy-saving mechanism for fish school, but also can inspire roboticists to design control algorithms for underwater robot swarm.

###

The work has been published in Nature Communications (L. Li, M. Nagy, J. M. Graving, J. Bak-Coleman, G. Xie & I. D. Couzin, 2020, “Vortex phase matching as a strategy for schooling in robots and in fish”), Link: https://doi.org/10.1038/s41467-020-19086-0

Professor Xie is the co-corresponding author of the paper, and Li Liang, who conducted the work when he was a Ph.D. candidate, is the first author of the paper. The work was supported in part by grants from the National Natural Science Foundation of China (NSFC, No. 91648120, 61633002, 51575005) and the Beijing Natural Science Foundation (No. 4192026). Collaborators include the Max-Planck-Institute for Animal Behaviour, the University of Konstanz, the Hungarian Academy of Sciences, the University of Löland, and Princeton University.

This study is a clear evidence showing the research strength on bio-inspired underwater robotics at Peking University: on the one hand, learning from nature to develop high-performance underwater bio-inspired robots, thus to promote the development of robotics technology; on the other hand, using robot fish as a new approach to study the collective behaviour of fish, thus to develop a new research paradigm and promote the advancement of natural science.

Media Contact
Huang Weijian
[email protected]

Original Source

http://newsen.pku.edu.cn/news_events/news/research/10279.htm

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19086-0

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.