• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A brain network for social attraction

Bioengineer by Bioengineer
July 14, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Humans are famously social animals. But they are not alone in their tendency to team up with other individuals of the same species (conspecifics) to reach their goals. In fact, herds of mammals, flocks of birds, or shoals of fish are abundantly observed in nature. How does an animal’s brain recognize other animals of its own kind? Scientists at the Max Planck Institute for Biological Intelligence, in foundation, study this process in young zebrafish. They now discovered a neuronal circuit that mediates social attraction. This specialized pathway, which runs from the retina deep into the brain, enables zebrafish to detect and approach nearby conspecifics.

Zebrafish

Credit: MPI for Biological Intelligence, i.f. / Julia Kuhl

Humans are famously social animals. But they are not alone in their tendency to team up with other individuals of the same species (conspecifics) to reach their goals. In fact, herds of mammals, flocks of birds, or shoals of fish are abundantly observed in nature. How does an animal’s brain recognize other animals of its own kind? Scientists at the Max Planck Institute for Biological Intelligence, in foundation, study this process in young zebrafish. They now discovered a neuronal circuit that mediates social attraction. This specialized pathway, which runs from the retina deep into the brain, enables zebrafish to detect and approach nearby conspecifics.

Humans and many other animals live in societies. At a fundamental level, social interactions require individuals to identify others as belonging to their own kind. This usually happens in fractions of a second, often instinctively. Unveiling the neuronal circuits that underly this behavior, however, is anything but trivial.

“There’s an inbuilt challenge in studying social interactions: For us as observers, actions and reactions are intermingled, both in animal behavior and at the neuronal level,” explains Johannes Larsch, project leader in Herwig Baier’s department. “This is because individuals taking part in these interactions influence each other. Both are, at the same time, senders and receivers of social signals. It has been particularly hard to investigate the role of the visual system and its associated brain areas.”

Visual stimulus for shoaling behavior

Johannes Larsch’s team nevertheless found a way to elucidate the importance of the visual system in social interactions. The scientists developed an experimental virtual reality setup for zebrafish larvae that simulates conspecifics. All that is needed is a projected dot on a screen, which – and this is important – moves across the display with a jerky movement pattern that is stereotypical of swimming zebrafish. The animals cannot resist this cue: They follow it around for hours, apparently confusing the moving dot with a real conspecific. The researchers had thus discovered a defined visual stimulus that triggers shoaling behavior.

The team could now investigate the neuronal processing of the stimulus. To do so, they extended their virtual-reality setup enabling them to simultaneously measure activity in the fish brain. The experiments revealed that a moving dot activates a specific set of neurons in a brain region known as the thalamus. The same area of the thalamus gets activated when another zebrafish larva swims nearby.

“The thalamus is a sensory control center of the brain that integrates and relays sensory inputs,” explains Johannes Larsch. Sensory information is processed on its route to the thalamus, first in the retina and then in the tectum, a major visual center of the vertebrate brain. By the time the information arrives in the thalamus, it has already been filtered for social cues, such as the jerky movements of a potential conspecific.

Connection between visual system and regions for social behavior

The nerve cells identified by the researchers in this region connect the visual system of the zebrafish with other brain regions that are active during social behavior. “We already knew that these other brain regions play a role in controlling social behavior. However, the visual stimuli that activate them were unknown. Our work has filled this knowledge gap and has revealed the neuronal pathways that transmit the signals,” says Larsch.

The importance of the newly identified neurons was confirmed when the researchers specifically blocked the function of these cells. Zebrafish larvae lost their interest in conspecifics as well as moving dots and hardly followed them around anymore. “The neurons we discovered thus regulate social approach and affiliation in zebrafish,” says Johannes Kappel, graduate student and lead author of the study. “Humans possess a thalamus, too, and many neuronal processes have been conserved during evolution. We also have brain regions that are active when we perceive facial movements or body motion, but the significance of these regions for social behavior has not been explored.”

The study by Kappel, Larsch, Baier and their collaborators has shed light on a part of the brain whose activation provides the elementary “glue” for the bonding of two zebrafish. Collectively, such small-scale interactions create shoals of fish. Social behavior is driven by networks of brains, which are themselves networks of neurons. Concludes Baier: “Neurobiological findings, such as ours, can perhaps inspire and enrich the thinking about the self-organization of animal societies in general, which is currently the domain of other scientific disciplines.”

 



Journal

Nature

DOI

10.1038/s41586-022-04925-5

Subject of Research

Cells

Article Title

Visual recognition of social signals by a tectothalamic neural circuit

Article Publication Date

13-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

August 22, 2025
Tracking the Language of Molecules

Tracking the Language of Molecules

August 22, 2025

Blocking Programmed Cell Death: A New Approach to Treating Rare Childhood Diseases

August 22, 2025

G9a-Driven H3K9me2 Modification Safeguards Centromere Integrity

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perilla frutescens acuta Stops Allergy by Blocking Key Pathways

Vaginal Estrogen Tablets Show Safety Potential for Postmenopausal Stroke Survivors

Deep Learning Radiomics Advances Tongue Cancer Staging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.