• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

“A blessing in disguise!” Physics turning bad into good

Bioengineer by Bioengineer
May 25, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter’s properties or change its form and be converted into thermal energy. Upon reaching a metallic material’s surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call “optical loss.”

FIgure 1

Credit: POSTECH

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter’s properties or change its form and be converted into thermal energy. Upon reaching a metallic material’s surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call “optical loss.”

 

Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research. New findings in physics are being made adopting non-Hermitian theory that embraces optical loss, exploring ways to make use of the phenomenon, unlike general physics where optical loss is perceived as an imperfect component of an optical system. A ‘blessing in disguise’ is that which initially seems to be a disaster but which ultimately results in good luck. This research story is a blessing in disguise in physics.

 

Prof. Junsuk Rho (Departments of Mechanical Engineering and Chemical Engineering) from POSTECH and PhD candidates Heonyeong Jeon and Seokwoo Kim (Mechanical Engineering) from POSTECH, and Prof. Yongmin Liu of Northeastern University (NEU) in Boston and their joint research team were able to control the direction of light beams using non-Hermitian meta-grating systems. The paper was featured in Science Advances, the international academic journal.

 

When light is incident on a metal surface, the electrons in the metal oscillate collectively as a single body with the light wave. The phenomenon is called surface plasmon polariton or SPP. A ‘grating coupler’ is widely used as an auxiliary device to control the directions of the SPPs. The efficiency of the device is limited in that it converts the right-angle incident light into SPPs in unintended directions.

 

The research team applied non-Hermitian theory to overcome the drawback. To start, the team calculated the theoretical exceptional point near which a certain optical loss occurs. Then, they validated its effectiveness through experiments using their specially designed non-Hermitian meta-grating coupler. The meta-grating coupler proved effective in providing unidirectional control of SSPs, which was nearly impossible with other grating couplers. They also could make light and SPP propagate in opposite directions by controlling the size and distance of meta-gratings. The research team was able to achieve the conversion of incident light into SSPs back to normal light using the same meta-grating device.

 

The research findings can be useful in quantum sensor research in various areas, such as detection of antigens for disease diagnosis or harmful gases in the atmosphere, which, combined with engineering, could open the door to a wide range of applications. Prof. Junsuk Rho, who led the team, said, “This research brought non-Hermitian optics to the nano-scale territory. It will contribute to the development of future plasmonic devices that have excellent direction controllability and performance.”

 

The research was funded by the US National Science Foundation, Samsung Science and Technology Foundation, and the National Research Foundation of Korea.



Journal

Science Advances

DOI

10.1126/sciadv.adf3510

Article Title

Subwavelength control of light transport at the exceptional point by non-Hermitian metagratings

Article Publication Date

12-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Optical Imaging Technique Promises Earlier Detection of Colorectal Cancer

Thioester-Driven RNA Aminoacylation Enables Peptide Synthesis

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.