• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Lipid raft components offer potential cholesterol-lowering drug target

Bioengineer by Bioengineer
December 20, 2018
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Approximately 1 in every 4 deaths in the United States is caused by heart disease, according to the Centers for Disease Control and Prevention. Hypercholesterolemia, or high cholesterol, is a major risk factor for cardiovascular disease. However, cholesterol is also an essential component of cell membranes. Mammals can either synthesize cholesterol or absorb it from food using the intestinal transmembrane protein Niemann-Pick C1-like 1, or NPC1L1. This transporter resides in lipid rafts, membrane microdomains used for cell-cell interaction and cell signaling that are enriched in cholesterol as well as gangliosides — a group of galactose-containing glycolipids.

In a paper in the Journal of Lipid Research, Jin-ichi Inokuchi from Tohoku University in Japan and colleagues show that NPC1L1-dependent intestinal cholesterol uptake requires a particular ganglioside called GM3 and the enzyme that synthesizes it, GM3S. Cholesterol uptake is decreased in GM3S-deficient cells, and GM3S-deficient mice fed a high-cholesterol diet show a lower susceptibility to high blood cholesterol. This research proposes a new viable target for cholesterol reducing therapies.

###

DOI: 10.1194/jlr.M089201

Media Contact
Laurel Oldach
[email protected]
http://dx.doi.org/10.1194/jlr.M089201

Tags: BiochemistryBiologyCholesterolGastroenterologyMetabolism/Metabolic DiseasesNutrition/Nutrients
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling the Male Reproductive System in Quatuoralisia

Unveiling the Male Reproductive System in Quatuoralisia

December 1, 2025
New Insights into Ichthyophis bannanicus Ecological Adaptations

New Insights into Ichthyophis bannanicus Ecological Adaptations

December 1, 2025

Olfactory Binding Proteins in Insects: A Comprehensive Review

December 1, 2025

Comparative Study of Two Innovative Single-Cell RNA Platforms

December 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Challenges in China’s Advanced Nurse Training

Assessing Cost-Effective Strategies for Colorectal Cancer Screening

Male Partner Treatment Reduces Female Bacterial Vaginosis Recurrence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.