• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers defy 19th-century law of physics in 21st century boost for energy efficiency

Bioengineer by Bioengineer
November 21, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Sussex

Research led by a University of Sussex scientist has turned a 156-year-old law of physics on its head in a development which could lead to more efficient recharging of batteries in cars and mobile phones.

Dr Jordi Prat-Camps, a research fellow at the University of Sussex, has for the first time demonstrated that the coupling between two magnetic elements can be made extremely asymmetrical. Working with colleagues from the Austrian Academy of Sciences and University of Innsbruck, Dr Prat-Camps' research rips up the physics rule book by showing it is possible to make one magnet connect to another without the connection happening in the opposite direction.

The findings run contrary to long-established beliefs of magnetic coupling, which emerge from the four Maxwell equations dating back to the seminal works of Michael Faraday and James Clerk Maxwell in the 19th century.

Dr Prat-Camps said: "We have created the first device that behaves like a diode for magnetic fields. Electric diodes are so crucial that none of the existing electronic technologies such as microchips, computers or mobile phones would be possible without them. If our result for magnetic fields would have one millionth of the same impact as the developments in electric diodes, it would be a hugely impactful success. The creation of such a diode opens up a lot of new possibilities for other scientists and technicians to explore. Thanks to our discovery we think it might be possible to improve and the performance of wireless power transfer technologies to improve the efficiency of recharging phones, laptops and even cars."

Dr Prat-Camps' breakthrough builds on research he and colleagues have carried out over a number of years focusing on the control and manipulation of magnetic fields by the use of metamaterials. Recently Dr Prat-Camps and his collaborators have developed new tools to control magnetism including magnetic undetectability cloaks, magnetic concentrators and wormholes.

As other researchers working with other kinds of metamaterials explored the possibility of breaking reciprocity for light and sound waves, Dr Prat-Camps explored whether the same challenge could be applied to magnetic fields.

After several unsuccessful attempts to break magnetic reciprocity, the team decided to try using an electrical conductor in movement. By solving Maxwell's equations analytically, the researchers very quickly demonstrated that not only could reciprocity be broken down but that, the coupling could be made maximally asymmetric, whereby the coupling from A to B would be different from zero but from B to A it would be exactly zero. Having shown that total unidirectional coupling was possible theoretically, the team designed and built a proof-of-concept experiment which confirmed their findings.

Dr Prat-Camps said: "The magnetic coupling between magnets or circuits is something extremely well-known. It dates back to the seminal works of Faraday and Maxwell and it is deeply embedded into the four Maxwell equations that describe all electromagnetic phenomena. A vast majority of the technologies we rely on today are based on magnetic coupling including motors, transformers, low-frequency antennas and wireless power transfer devices. As far as we know, nobody before us thought to ask whether this symmetry could be broken and to what extent."

The researchers are hopeful the findings could have wide implications. Technology reliant on magnetically-based wireless power transfer includes the vast majority of everyday electronic devices like mobile phones and laptops.

Innsbruck physicists Oriol Romero-Isart and Gerhard Kirchmair said: "If the coupling between coils is symmetric, some part of the energy can also flow in the opposite direction which can greatly reduce the efficiency of the transfer. By using a magnetic diode to prevent this backwards flow, the efficiency of the transfer could be greatly enhanced."

###

Media Contact

Anna Ford
[email protected]
01-273-678-111
@sussexunipress

http://www.sussex.ac.uk

Original Source

https://www.sussex.ac.uk/news/all?id=46873 http://dx.doi.org/10.1103/PhysRevLett.121.213903

Share12Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.