• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Machine learning masters the fingerprint to fool biometric systems

Bioengineer by Bioengineer
November 20, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BROOKLYN, New York, Tuesday, November 20, 2018 – Fingerprint authentication systems are a widely trusted, ubiquitous form of biometric authentication, deployed on billions of smartphones and other devices worldwide. Yet a new study from New York University Tandon School of Engineering reveals a surprising level of vulnerability in these systems. Using a neural network trained to synthesize human fingerprints, the research team evolved a fake fingerprint that could potentially fool a touch-based authentication system for up to one in five people.

Much the way that a master key can unlock every door in a building, these "DeepMasterPrints" use artificial intelligence to match a large number of prints stored in fingerprint databases and could thus theoretically unlock a large number of devices. The research team was headed by NYU Tandon Associate Professor of Computer Science and Engineering Julian Togelius and doctoral student Philip Bontrager, the lead author of the paper, who presented it at the IEEE International Conference of Biometrics: Theory, Applications and Systems, where it won the Best Paper Award.

The work builds on earlier research led by Nasir Memon, professor of computer science and engineering and associate dean for online learning at NYU Tandon. Memon, who coined the term "MasterPrint," described how fingerprint-based systems use partial fingerprints, rather than full ones, to confirm identity. Devices typically allow users to enroll several different finger images, and a match for any saved partial print is enough to confirm identity. Partial fingerprints are less likely to be unique than full prints, and Memon's work demonstrated that enough similarities exist between partial prints to create MasterPrints capable of matching many stored partials in a database. Bontrager and his collaborators, including Memon, took this concept further, training a machine-learning algorithm to generate synthetic fingerprints as MasterPrints. The researchers created complete images of these synthetic fingerprints, a process that has twofold significance. First, it is yet another step toward assessing the viability of MasterPrints against real devices, which the researchers have yet to test; and second, because these images replicate the quality of fingerprint images stored in fingerprint-accessible systems, they could potentially be used to launch a brute force attack against a secure cache of these images.

"Fingerprint-based authentication is still a strong way to protect a device or a system, but at this point, most systems don't verify whether a fingerprint or other biometric is coming from a real person or a replica," said Bontrager. "These experiments demonstrate the need for multi-factor authentication and should be a wake-up call for device manufacturers about the potential for artificial fingerprint attacks." This research has applications in fields beyond security. Togelius noted that their Latent Variable Evolution method used here to generate fingerprints can also be used to make designs in other industries — notably game development. The technique has already been used to generate new levels in popular video games.

###

A National Science Foundation grant supported the work. In addition to Bontrager, Togelius, and Memon, the research team includes postdoctoral fellow Aditi Roy and Michigan State University Professor of Computer Science and Engineering Arun Ross. The paper, DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution, is available at https://arxiv.org/pdf/1705.07386.pdf.

About the New York University Tandon School of Engineering

The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly). A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention and entrepreneurship and dedicated to furthering technology in service to society. In addition to its main location in Brooklyn, NYU Tandon collaborates with other schools within NYU, one of the country's foremost private research universities, and is closely connected to engineering programs at NYU Abu Dhabi and NYU Shanghai. It operates Future Labs focused on start-up businesses in downtown Manhattan and Brooklyn and an award-winning online graduate program. For more information, visit http://engineering.nyu.edu.

Media Contact

Kathleen Hamilton
[email protected]
646-997-3792
@@NYUTandon

http://engineering.nyu.edu/

https://engineering.nyu.edu/news/machine-learning-masters-fingerprint-fool-biometric-systems

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.