• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New information on the pathological mechanisms of Alzheimer’s disease

Bioengineer by Bioengineer
November 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Henri Huttunen

Alzheimer's disease is associated with two neuropathologies: amyloid plaques and tau aggregates, or tau protein accumulated in neurofibrillary tangles in neurons. Brain amyloid plaques are the better-known pathology, but the significance of tau to disease progression is equally important.

"It seems that in Alzheimer's disease, amyloid accumulation in the brain starts first, but symptoms typically occur after the amyloid pathology induces the tau pathology, at which point neuronal cell death and the loss of synapses start to accelerate," says Henri Huttunen, a docent at the Neuroscience Center of the University of Helsinki (a HiLIFE unit).

"It looks like tau accumulation is the really harmful element of the disease."

Tau also occurs in healthy neurons, but the accumulation of incorrectly folded, pathological tau plays a key role in Alzheimer's.

Earlier it was thought that tau aggregates only gain access outside cells once the cells die, but in recent years it has been found that tau pathology can move from sick to healthy cells. Prior to this, however, the molecular mechanisms that help tau penetrate the cell membrane have not been understood.

The recent study by Henri Huttunen's and Riikka-Liisa Uronen's research group, published in the Cell Reports journal, indicates that the accumulation of pathological tau triggers a safety valve mechanism in the otherwise well-regulated cell membrane.

"As the regulatory mechanisms of the tau protein give in, the protein ends up in the cell membrane, instead of the cell's cytoskeleton. The cholesterol-rich lipid rafts of the cell membrane seem to play a central role in this tau secretion mechanism," Huttunen says.

The study used cultured neurons and tailored reporter proteins to closely observe tau transfer between cells.

Normally, the cell membrane keeps the internal and external parts of the cell strictly apart. The membrane is a fatty film whose permeability to proteins, neurotransmitters and other biomolecules is carefully regulated.

From the perspective of drug development, the finding introduces a novel mechanism at which pharmacological molecules can be targeted. The accumulation of tau and amyloid into cerebrospinal fluid and the brain is already being used in disease diagnostics.

Molecular data on how tau interacts with cell membranes can potentially be used in slowing down Alzheimer's disease and other diseases that belong to a group known as tauopathies.

Unlike amyloid plaques, tau protein aggregates also occur in other neurodegenerative diseases, such as frontotemporal dementia.

"Currently we are only able to treat the symptoms of these disorders, which makes the development of a treatment that slows down disease progression an important goal," explains Huttunen.

The project headed by Huttunen already observed that cell membranes were sensitive to manipulation and that omega-3 fatty acids were particularly effective in preventing tau from permeating the membrane.

Neuronal cell membranes contain much more omega-3 fatty acids than other cell types, and there is epidemiological data suggesting their significance to brain health, which is reflected in current dietary recommendations.

"When omega-3 fatty acid DHA was added to the cell cultures, tau secretion from cells collapsed. It seems that omega-3 fatty acids modify the microstructure of the cell membrane to become less permeable to tau aggregates, capturing the protein within the cell," says Huttunen.

###

Media Contact

Henri Huttunen
[email protected]
358-442-750-672
@helsinkiuni

http://www.helsinki.fi/university/

Original Source

https://www.helsinki.fi/en/news/health-news/new-information-on-the-pathological-mechanisms-of-alzheimers-disease http://dx.doi.org/10.1016/j.celrep.2018.10.078

Share12Tweet7Share2ShareShareShare1

Related Posts

Personalized Guide to Understanding and Reducing Chemicals

February 7, 2026

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.