• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ground and stream water clues reveal shale drilling impacts

Bioengineer by Bioengineer
November 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Joshua Woda / Penn State

Chemical clues in waters near Marcellus Shale gas wells in rural Pennsylvania can identify new drilling-related sources of methane contamination, according to scientists.

The findings provide a new tool for distinguishing potential environmental impacts of shale drilling from pre-existing methane levels commonly found in Pennsylvania waterways, the researchers said.

Scientists also found that methane contamination may be more likely to occur when drilling takes place in certain geological settings, like those found in the study area in Lycoming County.

"This study provides new clues about where we might expect to find potential environmental impacts related to shale drilling and how to better identify new incidents after they occur," said Joshua Woda, a graduate student in geosciences at Penn State.

Woda and a team of researchers reported the finding in a paper published online this week in the Proceedings of the National Academy of Sciences.

The study focuses on an area where state regulators have cited multiple Marcellus Shale gas wells for well integrity issues. The nearest gas well was cited by state regulators for contaminating five residential water wells with high levels of methane. This gas poses an explosion hazard in enclosed spaces.

Methane levels remain above pre-drill conditions in stream and well water samples seven years after leaks were initially reported, researchers said.

Natural gas is primarily composed of methane, and drilling can cause the gas to escape into waterways or the atmosphere, where it is a potent greenhouse gas. Scientists think these incidents are rare compared to the overall number of shale gas wells drilled, but they are also difficult to identify.

Methane is common in Pennsylvania waterways, caused by natural sources like bogs and wetlands, as well as natural migration from deep underground rocks. This migration occurs separately from shale drilling.

"Because we lack good baseline data for water quality throughout Pennsylvania, it can be difficult to identify possible impacts of shale drilling," said Susan Brantley, distinguished professor of geosciences at Penn State and director of the Earth and Environmental Systems Institute. "While we believe these incidents of gas-well leakage are rare compared to the total number of gas wells, this study gives us a new tool to identity them when they occur."

Scientists analyzed pre- and post-drilling water samples from stream and well water around the reported leaks. They found that concentrations of some metals in the water began to rise shortly after the leaks began.

"We've documented that recent methane migration can change water chemistry in a way that can mobilize metals, such as iron, and release other unwanted chemical compounds, such as hydrogen sulfide," Woda said. "This is important because it can let people know what they might expect if they are recently impacted by something like a shale gas well leaking into their water supply."

The change in water chemistry indicates a gas plume moved into an aquifer from deep underground where horizontal drilling into shale has been accompanied by fracking. The clues could be used elsewhere to determine new leaks, researchers said.

"In other words, we have come up with new tracers that can be used with other lines of evidence to determine if a water well was impacted by recent gas migration," Woda said. "It is especially useful for people who did not collect pre-drill water samples."

Scientists said a high number of wells around the study area have been cited for cementing or casing violations. Drilling-related leaks are often caused by these types of construction issues.

"A high percentage of unconventional wells have received violations in this study area — about one third of the 101 producing wells — which is much higher than statewide estimates," Woda said.

The shale formation in the area is shallow and located along the axis of a large fold. Scientists said wells there may intersect fractures that are interconnected, forming good pathways for upward migration.

"We discovered that the drilled shale is very shallow at this point and the overlying rocks are tightly folded," Brantley said. "We think we have discovered a site where fractures in the folded rock may be helping natural gas come to the surface and that it may be accelerated by the presence of gas wells."

Further study could provide maps of areas where drilling could be avoided or lead to better management practices that could reduce risks for methane migration, the researchers said.

###

The National Science Foundation and the Pennsylvania State University General Electric Fund for the Center for Collaborative Research on intelligent Natural Gas Supply Systems funded this research.

Media Contact

A'ndrea Elyse Messer
[email protected]
814-865-9481
@penn_state

http://live.psu.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

November 2, 2025
Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Compact DAC Leveraging Optical Kerr Effect Innovations

Assessing Nursing Care Plan Writing: Validity Study

Phylogenomics Merges Mameliella and Maliponia into Antarctobacter

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.