• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How to melt gold at room temperature

Bioengineer by Bioengineer
November 20, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Alexander Ericson

When the tension rises, unexpected things can happen – not least when it comes to gold atoms. Researchers from, among others, Chalmers University of Technology, Sweden, have now managed, for the first time, to make the surface of a gold object melt at room temperature.

Ludvig de Knoop, from Chalmers' Department of Physics, placed a small piece of gold in an electron microscope. Observing it at the highest level of magnification and increasing the electric field step-by-step to extremely high levels, he was interested to see how it influenced the gold atoms.

It was when he studied the atoms in the recordings from the microscope, that he saw something exciting. The surface layers of gold had actually melted – at room temperature.

"I was really stunned by the discovery. This is an extraordinary phenomenon, and it gives us new, foundational knowledge of gold," says Ludvig de Knoop.

What happened was that the gold atoms became excited. Under the influence of the electric field, they suddenly lost their ordered structure and released almost all their connections to each other. Upon further experimentation, the researchers discovered that it was also possible to switch between a solid and a molten structure.

The discovery of how gold atoms can lose their structure in this way is not just spectacular, but also groundbreaking scientifically. Together with the theoretician Mikael Juhani Kuisma, from the University of Jyväskylä in Finland, Ludvig de Knoop and colleagues have opened up new avenues in materials science. The results are now published in the journal Physical Review Materials.

Thanks to theoretical calculations, the researchers are able to suggest why gold can melt at room temperature. Possibly, the surface melting can be seen as a so-called low-dimensional phase transition. In that case, the discovery is connected to the research field of topology, where pioneers David Thouless, Duncan Haldane and Michael Kosterlitz received the Nobel Prize in Physics 2016. With Mikael Juhani Kuisma in the lead, the researchers are now looking into that possibility.

In any case, the ability to melt surface layers of gold in this manner enables various novel practical applications in the future.

"Because we can control and change the properties of the surface atom layers, it opens doors for different kinds of applications. For example, the technology could be used in different types of sensors, catalysts and transistors. There could also be opportunities for new concepts for contactless components," says Eva Olsson, Professor at the Department of Physics at Chalmers.

But for now, for those who want to melt gold without an electron microscope, a trip to the goldsmith is still in order.

###

About the scientific article

The article "Electric-field-controlled reversible order-disorder switching of a metal tip surface" has been published in the journal Physical Review Materials. It was written by Ludvig de Knoop, Mikael Juhani Kuisma, Joakim Löfgren, Kristof Lodewijks, Mattias Thuvander, Paul Erhart, Alexandre Dmitriev and Eva Olsson. The researchers behind the results are active at Chalmers, Gothenburg University, the University of Jyväskylä in Finland, and Stanford University in the United States.

More about the research infrastructure at Chalmers

The Chalmers Material Analysis Laboratory (CMAL) has advanced instruments for material research. The laboratory formally belongs to the Department of Physics, but is open to all researchers from universities, institutes and industry. The experiments in this study have been carried out using advanced and high-resolution electron microscopes – in this case, transmission electron microscopes (TEM). Major investments have recently been made, to further push the laboratory to the forefront of material research. In total, the investments are about 66 million Swedish kronor, of which the Knut and Alice Wallenberg Foundation has contributed half.

Read more about Chalmers Material Analysis Laboratory here.

More about electron microscopy

Electron microscopy is a collective name for different types of microscopy, using electrons instead of electromagnetic radiation to produce images of very small objects. Using this technique makes it possible to study individual atoms. There are different types of electron microscopes, such as transmission electron microscopes (TEM), scanning transmission electron microscopes (STEM), scanning electron microscopes (SEM) and combined Focused Ion Beam and SEM (FIB-SEM).

For more information, contact:

Ludvig de Knoop
Post-doctoral researcher in Physics
Chalmers
[email protected]
+46 31 772 51 80

Eva Olsson
Professor of Physics, Chalmers
[email protected]
+46 31 772 32 47

Media Contact

Joshua Worth
[email protected]
46-317-726-379
@chalmersuniv

http://www.chalmers.se/en/

Original Source

http://www.chalmers.se/en/departments/physics/news/Pages/How-gold-can-melt-at-room-temperature-.aspx http://dx.doi.org/10.1103/PhysRevMaterials.2.085006

Share12Tweet8Share2ShareShareShare2

Related Posts

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025

New Metabolic Syndrome Score Validated in Teens

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.