• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Frogs breed young to beat virus

Bioengineer by Bioengineer
November 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Lewis Campbell

Frogs from groups exposed to a deadly virus are breeding at younger ages, new research suggests.

Scientists studying European common frogs in the UK compared groups ("populations") exposed to ranavirus and those free from the disease.

While the youngest breeding frogs in disease-free populations are four years old, frogs in virus-exposed groups breed as young as two.

The reasons for this are not yet clear, but the team – led by researchers from the University of Exeter and the Zoological Society of London – warn that this decrease in breeding age means disease-exposed populations are at greater risk of local extinction sparked by environmental changes.

Frogs gather at breeding spots such as ponds and then disperse, but most return to the same ponds year after year.

"Our research shows that the ages of the frogs that return to breed varies between populations which are known to have ranavirus and those which don't," said Dr Lewis Campbell, who conducted the research during his PhD at the University of Exeter's Penryn Campus in Cornwall.

"We found significantly fewer old frogs and significantly more young frogs at populations which have ranavirus.

"It's possible that the more times an older frog returns to the same infected breeding pond, the more likely they are to become diseased and die.

"The absence of older frogs may then create an opportunity for younger – and therefore smaller and less competitive – frogs to successfully breed.

"With high mortality among older frogs, it's also possible that natural selection pressure has favoured those that are genetically disposed to breed younger."

Ranavirus, first recorded in the UK in the 1980s, can cause severe skin sores and internal bleeding. It is usually fatal.

In the new study, which incorporated data collected by citizen scientists, breeding frogs in disease-free populations were most commonly six to eight years old, while in populations where ranavirus was present they were mostly three to six years old.

Commenting on the differences between the two kinds of frog population, Dr Campbell, now of the University of Wisconsin-Madison, said: "Our models suggest both infected and uninfected populations can continue to thrive in normal conditions.

"But disease-exposed populations appear to depend heavily on younger breeders that don't produce as many offspring as older, larger frogs.

"For these populations, an environmental change such as a late frost – that would kill frogspawn and further lower the number of offspring produced – could cause that population to collapse (known as a local extinction)."

He added: "We live in times of increasing environmental change, so understanding how wildlife diseases change the ability of their hosts to cope with such uncertainty is increasingly critical."

Dr Xavier Harrison, of the Zoological Society of London, said: "We often think of the negative consequences of wildlife disease as being the death of infected individuals in the short term.

"But this study shows that even when a population seems to have survived a disease outbreak and appears otherwise healthy, there are still lingering consequences of that disease months or years afterwards.

"If we really want to understand the full impact of wildlife diseases in nature we need to monitor disease-challenged populations over much longer timescales."

Ranavirus is believed to be spreading in the UK, and human activity such as movement of animals and soils is thought to be the major cause of this.

Amphibians are the most threatened group of vertebrates globally, and emerging infectious diseases play a large role in their continued population declines.

###

The paper, published in the journal PeerJ, is entitled: "An emerging viral pathogen truncates population age structure in a European amphibian and may reduce population viability."

Media Contact

Alex Morrison
[email protected]
44-013-927-24828
@uniofexeter

http://www.exeter.ac.uk

Related Journal Article

http://dx.doi.org/10.7717/peerj.5949

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025
Pneumococcal S Protein Drives Cell Wall Defense

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025

MHC Gene Variation Drives Lovebird Evolution

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sarcopenia Linked to Poor Cancer Survival Rates

RETREAT-FRAIL Trial Revolutionizes Hypertension Management in Seniors

AI’s Transformative Impact on Web Development’s Future

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.