• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Establishment of the immortalized cell line derived from Okinawa rail (endangered species)

Bioengineer by Bioengineer
November 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NIES

The number of critically endangered animals has been increasing in recent years. According to data from the International Union for the Conservation of Nature (IUCN), 1375 avian species are categorized as being endangered animals, and around 12% of the endangered species are avian. The conservation of endangered species is an important task for our next generation in order to maintain genetic diversity. The Okinawa rail, which is a species endemic to northern Okinawa Island, is an example of an endangered (EN) avian species. The Okinawa rail is categorized EN on the IUCN red list, because its individual numbers are estimated to be approximately 1500.

As part of the cellular conservation of endangered avian species, our group initiated a primary cell culture project aimed at preserving endangered avian species in Japan, such as the Okinawa rail. However, primary cells cannot be cultured indefinitely because of cellular senescence and stresses caused by cell culture. To overcome these cell culture limitations, primary cells have to be immortalized. Although immortalized cultured cells are useful for various functional assays or transcriptome analysis, highly efficient and reproducible immortalization methods have not been developed in avian-derived cells. We firstly introduced the simian Virus 40T antigen (SV40T) and human papillomavirus (HPV)-E6E7 to chick and Okinawa rail (endangered species) derived fibroblast. However, neither the SV40T nor E6E7 genes could induce avian cell immortality. Accordingly, we attempted to use a recently developed immortalization method, which involves the co-expression of mutant CDK4, Cyclin D and TERT (K4DT method) in these avian cells. Cellular division until the senescence was significantly extended by K4DT although the K4DT method could not induce the efficient immortalization in mass cell population. As a result, we succeeded to obtain the immortalized avian cells with K4DT expression. We conclude that the K4DT method is useful to extend the cell division and immortalization of avian-derived cells.

###

The research is published on November 11, 2018 in Journal of Cellular Physiology.

Article:

Katayama M, Kiyono T, Ohmaki H, Eitsuka T, Endoh D, Inoue-Murayama M, Nakajima N, Onuma M, Fukuda T. Extended proliferation of chicken and Okinawa rail derived fibroblasts by expression of cell cycle regulators. Journal of Cellular Physiology. DOI: 10.1002/jcp.27417

Under line: Wildlife Genome Collaborative Research Group in National Institute for Environmental Studies, Japan.

Contact:

Manabu Onuma
National Institute for Environmental Studies
16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
@nies.go.jp

Masafumi Katayama
National Institute for Environmental Studies
16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
@nies.go.jp

Tomokazu Fukuda
Iwate University, Graduate School of Science and Engineering
Iwate University, Faculty of Science and Engineering, Laboratory of Cell Engineering and Molecular Genetics
4-3-5, Ueda, Morioka-city, Iwate Prefecture, 020-8551, Japan

Media Contact

Manabu Onuma
[email protected]

http://www.nies.go.jp/index-e.html

Related Journal Article

http://dx.doi.org/10.1002/jcp.27417

Share12Tweet8Share2ShareShareShare2

Related Posts

Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

November 6, 2025
blank

Selective Lipid Deposition in Triploid Rainbow Trout

November 6, 2025

Biohub Unveils Pioneering Large-Scale Initiative Merging Frontier AI and Frontier Biology to Revolutionize Disease Prevention and Cure

November 6, 2025

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Speeding Up Transgenic Plant Growth: Harnessing Natural Regeneration to Cut Weeks Down to Days

Revolutionizing Physical Activity Research Through Co-Creation

Topical Melatonin Boosts Healing in Diabetic Foot Ulcers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.