• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA-encoded PCSK9 inhibitors may provide alternative for treating high cholesterol

Bioengineer by Bioengineer
November 15, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA — (Nov. 15, 2018) — Researchers at The Wistar Institute have developed novel synthetic DNA-encoded monoclonal antibodies (DMAbs) directed against PCSK9, a protein key to regulating cholesterol levels in the bloodstream. Results of preclinical studies showed a significant cholesterol decrease, opening the door for further development of this approach as a simple, less frequent and cost-effective therapy, as reported in a paper published online in Molecular Therapy.

Elevated, low-density lipoprotein cholesterol (LDL-C) is a major risk factor for cardiovascular disease, the leading cause of death in the U.S. and worldwide. Statins are effective and widely used cholesterol-lowering medications, but have been associated with a number of side effects that have prompted development of alternative treatment strategies, including monoclonal antibodies targeting the PSCK9 protein that result in reduced degradation of LDL-C receptors on liver cells and increased cholesterol clearance from blood circulation.

"Any therapy based on recombinant monoclonal antibodies faces challenges of production among other issues as molecules may be difficult to manufacture and require multiple administrations," said lead researcher David B. Weiner, Ph.D., executive vice president, director of Wistar's Vaccine & Immunotherapy Center, and the W.W. Smith Charitable Trust Professor in Cancer Research at The Wistar Institute. "Anti-PCSK9 therapy presents an important opportunity for development of alternative approaches, possibly expanding options for such therapies."

Weiner and collaborators engineered synthetic DNA constructs that are delivered by intramuscular injection and encode the genetic instructions for the body to make its own functional monoclonal antibodies, entirely bypassing bioprocess and manufacturing factory approaches. This study provides the first proof of principle that such engineered DMAbs may be developed as a new option for coronary artery disease.

The researchers tested expression and activity of the DMAbs targeting PCSK9 in mice. A single intramuscular administration drove robust antibody expression within days and for up to two months, resulting in a substantial increase in the presence of LDL-C receptors on liver cells. This in turn resulted in a significant decrease in total cholesterol and non-high-density lipoprotein cholesterol (non-HDL-C), an important parameter for evaluating cardiovascular risk.

"We are excited about these findings that support the flexibility and versatility of the DMAb platform as a next generation approach that can be optimized for a wide host of applications," said Makan Khoshnejad, Ph.D., first author on the study and a postdoctoral fellow in the Weiner Lab.

###

Co-authors of this study from The Wistar Institute include Ami Patel, Krzysztof Wojtak, Sagar B. Kudchodkar, and Kar Muthumani; other co-authors include Laurent Humeau from Inovio Pharmaceuticals, Inc.; and Nicholas N. Lyssenko and Daniel J. Rader from the University of Pennsylvania.

This work was supported by funding from Inovio Pharmaceuticals, Inc.

Development of Novel DNA-encoded PCSK9 Monoclonal Antibodies as Lipid-lowering Therapeutics,
Molecular Therapy (2018). Advance online publication.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact

Darien Sutton
[email protected]
215-898-3988
@TheWistar

Home

https://wistar.org/news/press-releases/engineered-dna-encoded-pcsk9-inhibitors-may-provide-effective-alternative

Related Journal Article

http://dx.doi.org/10.1016/j.ymthe.2018.10.016

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Lipid Deposition in Triploid Rainbow Trout

November 6, 2025
Biohub Unveils Pioneering Large-Scale Initiative Merging Frontier AI and Frontier Biology to Revolutionize Disease Prevention and Cure

Biohub Unveils Pioneering Large-Scale Initiative Merging Frontier AI and Frontier Biology to Revolutionize Disease Prevention and Cure

November 6, 2025

Scientists Uncover New ‘Hook’ Mechanism in Motor Proteins That Ensures Precise Neuronal Cargo Transport

November 6, 2025

Three Newly Discovered Toad Species Bypass Tadpole Stage, Give Birth to Live Toadlets

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Taiwanese Nursing Students’ Design Thinking Skills Over Time

Adalimumab Immunogenicity in Noninfectious Uveitis Patients

Revolutionizing Protein Production from Food Waste

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.