• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The first rains in centuries in the Atacama Desert devastate its microbial life

Bioengineer by Bioengineer
November 14, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carlos González Silva

The Atacama Desert, the driest and oldest desert on Earth, located in northern Chile, hides a hyper-arid core in which no rain has been recorded during the past 500 years. But this situation has changed in the last three years: for the first time, rainfall has been documented in the hyper-arid core of the Atacama and, contrary to what was expected, the water supply has caused a great devastation among local life. This is the main conclusion of an international study, published today in Scientific Reports and entitled "Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert", and directed by researchers from the Center for Astrobiology (CAB), a mixed center of the Spain's Higher Council for Scientific Research (CSIC) and the National Institute of Aerospace Technology (INTA). These recent rains are attributed to changing climate over the Pacific Ocean.

"Our group has discovered that, contrary to what could be expected intuitively, the never-before-seen rainfall has not triggered a flowering of life in Atacama, but instead the rains have caused enormous devastation in the microbial species that inhabited the region before the heavy precipitations", explains Dr. Alberto G. Fairén.

"Our work shows that high rainfall has caused the massive extinction of most indigenous microbial species. The extinction range reaches 85%, as a result of the osmotic stress that has caused the sudden abundance of water: the autochthonous microorganisms, which were perfectly adapted to thrive under conditions of extreme dryness and had strategies optimized for the extraction of the scarce humidity of their environment, have been unable to adapt to the new conditions of sudden flooding and have died from excess water", adds Fairén.

From Atacama to Mars

This study represents a great advance to understand the microbiology of extremely arid environments. It also presents a new paradigm to decode the evolutionary path of a hypothetical early microbiota of Mars, since Mars is a hyper-arid planet that experienced catastrophic floods in ancient times.

"Mars had a first period, the Noachian (between 4.5 and 3.5 billion years ago), in which there was a lot of water on its surface," says Fairén. "We know this from the enormous amount of hydrogeological evidence still present in the Martian surface, in the form of ubiquitous hydrated minerals, traces of dried rivers and lakes, deltas, and perhaps a hemispheric ocean in the northern plains," explains Fairén.

Mars eventually lost its atmosphere and its hydrosphere, and became the dry and arid world we know today. "But at times during the Hesperian period (from 3.5 to 3 billion years ago), large volumes of water carved its surface in the form of outflow channels, the largest channels in the Solar System. If there were still microbial communities withstanding the process of extreme drying, they would have been subjected to processes of osmotic stress similar to those we have studied in Atacama", Fairén details.

"Therefore, our Atacama study suggests that the recurrence of liquid water on Mars could have contributed to the disappearance of Martian life, if it ever existed, instead of representing an opportunity for resilient microbiota to bloom again", adds Fairén.

In addition, this new study notes that large deposits of nitrates at the Atacama Desert offer evidence of long periods of extreme dryness in the past. The nitrates were concentrated at valley bottoms and former lakes by sporadic rains about 13 million years ago, and can be food for microbes. The Atacama nitrates may represent a convincing analog to the nitrate deposits recently discovered on Mars by the rover Curiosity (and reported in a 2015 study entitled "Evidence for indigenous martian nitrogen in solid samples from the Curiosity rover investigations at Gale crater", in the Proceedings of the National Academy of Sciences). Earlier this year, Fairén and colleagues discovered that short-term wetter environments in early Mars, occurring sporadically in a generally hyperdry early planet, explains the observed martian mineralogy.

This study, entitled "Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars", was published in February in Nature Astronomy. "These long periods of dryness, followed by short-term wetter conditions, may also be in the origin of the nitrate deposits on Mars", concludes Fairén.

###

Fairén's work was funded by the European Research Council.

Media Contact

Abel Grau
[email protected]
34-915-681-471
@CSIC

http://www.csic.es

Original Source

http://www.csic.es/noticias-y-multimedia?p_p_id=contentviewerservice_WAR_alfresco_packportlet&p_p_lifecycle=1&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=1&p_p_col_count=2&_contentviewerservice_WAR_alfresco_packportlet_struts_ac http://dx.doi.org/10.1038/s41598-018-35051-w

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.