• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Precision-medicine platform for mild Alzheimer’s disease and at-risk individuals

Bioengineer by Bioengineer
November 13, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Alzheimer's disease (AD) is a progressive, neurodegenerative condition in which individuals exhibit memory loss, dementia, and impaired metabolism. Nearly all previous single-domain studies to treat AD have failed, likely because it is a complex disease with multiple underlying drivers contributing to risk, onset, and progression. Keine et al. explored the efficacy of a multidomain therapy approach based on the disease risk factor status specific to individuals with AD diagnosis or concern. Their findings indicate previously unidentified connectivity between AD risk factors, suggesting that treatment regimens should be tailored to the individual, and should be multi-modal to simultaneously return risk factors to a normative state. If successfully performed, the possibility to slow progression of AD and even reverse aspects of cognitive decline may become achievable.

Keine et al. completed analysis for forty subjects with subjective cognitive decline (SCD) and mild cognitive impairment (MCI), using novel software from uMETHOD Health. The software is designed to execute a precision-medicine-based approach to develop personalized treatment recommendations, with the goal of slowing or reversing biologic drivers of AD. AD-associated inputs encompassed genomic data, biospecimen measurements, imaging data (such as MRIs or PET scans), medical histories, medications, allergies, comorbidities, relevant lifestyle factors, and results of neuropsychology testing. Algorithms were employed to prioritize physiologic and lifestyle states with the highest probability of contributing to disease status, and these priorities were incorporated into a personalized care plan, which was delivered to physicians and supported by health coaches to increase adherence. With an average of 8.4 months on their treatment plans (equal to about 2.8 iterations of care plans), 80% of individuals in the study showed overall improved memory function scores or held steady, as measured by cognitive evaluations.

It is increasingly recognized that early intervention is key to developing an effective therapy for AD; a precision-medicine platform enables an actionable multidomain therapy for those in the early stages of the disease. Many of the underlying pathologic drivers of the disease (e.g., high homocysteine, genetic biases, insulin resistance, poor diet, poor sleep, lack of exercise, chronic inflammation, toxicity) are modifiable, allowing persons to reduce their risk and potentially delay disease onset. With a multitude of underlying drivers of AD, genetic factors, comorbidities, medications, and optimizations for each person, the amount of data used in generating a care plan quickly accumulates, making a timely process beyond the scope of what a physician can do by hand, and do well quickly. But where manual methods fail, clinical informatics platforms excel. These platforms can provide a personalized treatment method for each individual in a repeatable, predictable, and timely manner. Applying these complex treatment plans to a broader audience through the development of other disease state-specific algorithms could increase the quality of life for many in the aging population.

###

Access the article here: http://www.eurekaselect.com/166449

Media Contact:

Helen Bertelli
[email protected]">[email protected]

Reference: Keine, Dorothy, et al. Development, application, and results from a precision-medicine platform that personalizes multi-modal treatment plans for mild Alzheimer's disease and at-risk individuals. Current Aging Science, 2018, DOI: 10.2174/1874609811666181019101430

Media Contact

Faizan ul Haq
[email protected]
@BenthamScienceP

http://benthamscience.com/

http://dx.doi.org/10.2174/1874609811666181019101430

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.