• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Understanding congenital heart defects to prevent them

Bioengineer by Bioengineer
November 13, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: University of Houston

To understand cardiovascular failures, the leading cause of birth defect-related deaths in infants, UH professor of biomedical engineering Kirill Larin is teaming up with Baylor College of Medicine professor of cellular and molecular physiology Irina Larina on a chicken and egg hunt.

"When the heart develops, it becomes stiffer as required for ability to contract and pump blood," said Larin. "So the question is – does it become stiff because it's contracting, or is it stiff to begin with because it is genetically predefined?"

Surprisingly, very little is known about an embryo's developing heart.

"Defining how these mechanical factors integrate with genetic pathways and heart function is critically important for understanding congenital heart defects and heart failure," said Larin. Such information is required to develop new strategies for therapeutic interventions of heart defects.

While multiple studies suggest that cardiac contraction, blood flow and stiffness each influence cardiovascular development of the heart, their individual roles remain unknown. The team's project, defining the roles of cardiac contraction and flow-induced shear stress in regulating mechanical stiffness, is part of a $3 million grant from the National Institutes of Health.

It is well established that biomechanical stimuli are important regulators of proper cardiovascular development. The research team will get a bird's eye view, watching the heart develop in utero using optical coherence tomography (OCT), a noninvasive high-resolution retina imaging technology that uses light waves to take cross-section pictures. Larin is a pioneer of using OCT to image portions of the body without touching or making a cut. He describes the method as "frontier technology," and is using it in his other work to assess if heart medicine is working and scar tissue is healing immediately following a heart attack.

Larin is developing the data processing methods and the imaging tools which will deliver 3D images and will be "super-fast to catch the cardiac cycle and all the activity as the heart forms," he said.

"One out of every 100 babies in the United States has a congenital heart defect leading to death," said Larina. "Understanding biomechanical regulation of heart development is highly important for better management of congenital heart defects."

The project fills a significant gap in the field of early mammalian cardiac development and defines the role of cardiac forces in maintaining mechanical stiffness and cell differentiation.

###

Media Contact

Laurie Fickman
[email protected]
713-743-8454
@UH_News

http://www.uh.edu/news-events

Original Source

http://www.uh.edu/news-events/stories/2018/november-2018/111318-heart-defects-oct-larin.php

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.