• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Pulling the genome apart: Chromosome segregation during mitosis explained

Bioengineer by Bioengineer
November 12, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan — When a cell divides–a process known as mitosis–its chromosomes need to be separated and evenly distributed into the newly created daughter cells. Although this is known to be extremely complicated and to feature a range of cellular components, many of its details remain unclear, which has hampered efforts to develop treatments for when mitosis goes awry.

A new study reported in the journal Nature Cell Biology has provided deeper insight into this process by revealing the details of how protein complexes congregate at the centers of chromosomes, at sites known as centromeres. At these sites, the protein complexes act as anchors through which cellular structural organizers can redistribute chromosomes within the cell.

These protein complexes on centromeres are known as kinetochores, to which long, thin, cylindrical structures called microtubules attach. In cell division, microtubules can physically manipulate the chromosomes, pulling half of each chromosome for inclusion into one daughter cell, and half into the other.

In this new study, the Osaka University-led team focused on the different components that form and bind to kinetochores. One such group is the CCAN proteins, which are present at the centromere throughout the cell cycle and act as a binding site for other microtubule-associating proteins only when cell division occurs. This work shows that a subset of the CCAN proteins, forming the CENP-T pathway, dominates in ensuring successful cell division by binding to a protein complex called the Ndc80 complex, enabling microtubules to attach to chromosomes.

"We chiefly investigated whether the CENP-T pathway or the roughly similar CENP-C pathway is essential for mitotic progression by selectively deleting parts of these proteins that bind to the Ndc80 complex," corresponding author Tatsuo Fukagawa says. "CENP-T mutants with an absence of domains for binding to Ndc80, but not similar CENP-C mutants, revealed a failure of chromosomes to segregate, preventing cells from dividing and ultimately leading to cell death."

To confirm their results and reveal more about CENP-T's essential role in promoting cell division via the Ndc80 complex, the team also constructed chimeric constructs consisting partly of CENP-T and partly of CENP-C. This validated the finding that CENP-T and the molecules that bind to it are vital for mitosis. They also revealed that phosphorylation plays a vital role in regulating binding between the Ndc80 complex and CENP-T, and obtained additional direct evidence for their findings by measuring the pulling force exerted by microtubules in the mitotic spindle.

"Our work overturns an earlier consensus by showing that it is CENP-T, not CENP-C, that acts via the Ndc80 complex for successful cell division by ensuring accurate and timely chromosome segregation," lead author Masatoshi Hara says. "The findings could lead to therapeutic options for treating diseases involving dysfunction in the kinetochores and mitotic progression, including cancer."

###

The article "Multiple phosphorylations control recruitment of the KMN network onto kinetochores" is published in Nature Cell Biology at doi: https://doi.org/10.1038/s41556-018-0230-0.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities.
The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

http://resou.osaka-u.ac.jp/en/research/2018/20181113_1 http://dx.doi.org/10.1038/s41556-018-0230-0

Share14Tweet9Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.