• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Peak performance: new stellarator experiments show promising results

Bioengineer by Bioengineer
November 5, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Image credit – Bernhard Ludewig, Max Planck Institute of Plasma Physics)

PORTLAND, Ore.–Imagine building a machine so advanced and precise you need a supercomputer to help design it. That's exactly what scientists and engineers in Germany did when building the Wendelstein 7-X experiment. The device, funded by the German federal and state governments and the European Union, is a type of fusion device called a stellarator. The new experiment's goal is to contain a super-heated gas, called plasma, in a donut-shaped vessel using magnets that twist their way around the donut.

The team completed construction of Wendelstein 7-X, the world's most advanced superconducting stellarator, in 2015 and, since then, scientists have been busy studying its performance (Figure 1).

"The advantage of stellarators over other types of fusion machines is that the plasmas produced are extremely stable and very high densities are possible", said Dr. Novimir Pablant, a U.S. physicist from the Princeton Plasma Physics Laboratory, who works alongside a multinational team of scientists and engineers from Europe, Australia, Japan, and the United States (the U.S. collaboration is funded by the Department of Energy).

Using a tool called an X-ray spectrometer, Pablant studied the light given off by the plasma to answer an important question: Did the design of Wendelstein 7-X's twisted magnetic field work? His results indicate that, indeed, the plasma temperatures and electric fields are already in the range required for peak performance (Figure 2). He will present his work at the American Physical Society Division of Plasma Physics conference in Portland, Ore.

If the scientists working on Wendelstein 7-X are successful in optimizing the machine performance, the plasma contained in the donut will become even hotter than the sun. Atoms making up the plasma will fuse together, yielding safe, clean energy to be used for power. This achievement is a major milestone as it shows that it is possible to achieve temperatures of more than 10 million degrees in high-density plasmas using only microwaves to heat the electrons in the plasma. This achievement takes us one step closer to making fusion power a reality.

###

For additional information see also: [1] http://www.ipp.mpg.de/4413312/04_18

Media Contact

Saralyn Stewart
[email protected]
512-694-2320
@APSphysics

http://www.aps.org

Share12Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.