• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

WSU researchers see cognitive changes in offspring of heavy cannabis-using rats

Bioengineer by Bioengineer
November 4, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PULLMAN, Wash. – Washington State University researchers have seen cognitive changes in the offspring of rats exposed to heavy amounts of cannabis. Their work is one of the rare studies to look at the effects of cannabis during pregnancy. The drug is the most commonly used illicit substance among pregnant women.

Ryan McLaughlin, an assistant professor of Integrative Physiology and Neuroscience, exposed pregnant rats to various concentrations of cannabis vapor and documented how the offspring of those exposed to high amounts had trouble adjusting their strategy to get sugar rewards.

"Prenatal exposure to cannabis may cause meaningful changes in brain development that can negatively impact cognitive functioning into adulthood," McLaughlin and his colleagues wrote in a summary for a presentation Sunday at the Society for Neuroscience's annual meeting, Neuroscience 2018, in San Diego. It is the largest neuroscience conference in the world.

The researchers used a new model of exposure, vaporizing cannabis extracts to recreate the way humans most often use the drug. Pregnant rats, or dams, received various amounts of vapor. Controls received none, while others got cannabis-free vapor, or vapor with low or high amounts of cannabis. The smoke, administered in atmospherically controlled cages over two hour-long sessions per day from before pregnancy through gestation, raised the THC levels in the blood to that of a person who has had a few puffs.

About 60 offspring were submitted to a task similar to the Wisconsin Card Sorting Test, an 80-year-old method of testing a human's flexibility when the conditions of positive reinforcement change. Rats were first trained to press one of two levers, learning that they got sugar when they pressed the lever near a light. The next day, they got a sugar reward when they pressed the left or right lever, regardless of the light.

Rats exposed to cannabis in utero learned the first rule easily enough. But rats exposed to a high concentration of cannabis, "showed marked deficits in their ability to shift strategies when the new rule was implemented," the researchers wrote.

Rats from dams exposed to high levels of cannabis often appeared to learn the new reward strategy, hitting the correct lever several times in a row. But they would not keep to the strategy long enough to strike the right lever ten times, like the offspring of dams exposed to less or no cannabis.

"The general take-home message is that we see deficits, particularly in the domain of cognitive flexibility, in rats prenatally exposed to high doses of cannabis vapor," McLaughlin said. "The impairment is not a general learning deficit, as they can learn the initial rule just fine. The deficit only emerges when the learned strategy is no longer resulting in reward delivery. They cannot seem to adapt properly and tend to commit more regressive errors as a result, which suggests impairment in maintaining the new optimal strategy."

McLaughlin notes that the high-exposure rats may not necessarily be less intelligent, just less motivated. They could be less interested in the task, not want so much sugar, or want to explore other avenues.

"They don't have these opinions about how they need to perform because they don't want to be perceived as 'the stupid rat,'" he said. "Clearly that's not what's motivating their behavior. They're just going to try to get as many sugar pellets as they can. But at some point, do sugar pellets continue to motivate your behavior after you've eaten 100? Do you still care as much about them?"

###

The project, which is consistent with federal law, was supported by WSU's Alcohol and Drug Abuse Research Program. Funded by state cannabis taxes and liquor license fees, the program is aimed at pilot projects that focus on drug abuse.

Media Contact

Ryan McLaughlin
[email protected]
509-335-6448
@WSUNews

Washington State University

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.