• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

RIT collaborates on multi-university research exploring the quantum world

Bioengineer by Bioengineer
November 2, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A Rochester Institute of Technology researcher is building a theoretical framework to predict how nanoparticles made of graphene, silica and rare-earth compounds behave when suspended within the center of a laser beam.

Mishkat Bhattacharya, associate professor of physics at RIT and a member of the Future Photon Initiative, is collaborating on a multi-university project exploring quantum science in levitated mechanical systems. The four-year grant is funded by the U.S. Department of the Navy's Office of Naval Research. RIT received $500,000 for its role in the University of Rochester-led project, which includes Yale University, Northwestern University, University of Washington and University of Maryland.

Bhattacharya seeks to understand the overall parameters for creating and sustaining a quantum state with levitated optomechanics. His theoretical work will model advanced sensing designs based on the "optical tweezers" technique. This groundbreaking invention in laser physics won Arthur Ashkin at Bell Laboratories half of this year's Nobel prize in physics.

Optical tweezers use radiation pressure exerted by photons to push and trap particles inside a laser beam. The tool allows scientists to study tiny particles freed from a supporting substrate and to measure their properties without interference.

Bhattacharya's award will help train RIT undergraduates, graduates and postdoctoral researchers in quantum science and technology. His research group consists of Kristian Feliz, a second-year physics major, and postdoctoral fellows Pardeep Kumar and Tushar Biswas.

"This is an important area for developing student expertise," Bhattacharya said. "The upcoming 10-year National Quantum Initiative Act has already been passed by the House of Representatives and is currently being considered by Congress."

Passage of the $1.275 billion initiative would prioritize the research and development of quantum information science and technology, ensuring the United States' leadership in the quantum sector and enhancing national security.

###

Media Contact

Susan Gawlowicz
[email protected]
585-475-5061
@ritnews

http://www.rit.edu

https://www.rit.edu/news/story.php?id=68398

Share12Tweet8Share2ShareShareShare2

Related Posts

Insightful AI Estimates Lithium-Ion Battery Lifespan

Insightful AI Estimates Lithium-Ion Battery Lifespan

September 20, 2025

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

September 20, 2025

Prostate-Specific Antigen Testing: Past, Present, Future

September 20, 2025

Bisabolol: Natural Anticancer Agent with Therapeutic Promise

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insightful AI Estimates Lithium-Ion Battery Lifespan

Next-Gen Oncology: Precision Genomics Meets Immuno-Engineering

Prostate-Specific Antigen Testing: Past, Present, Future

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.