• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Key gene find could enable development of disease-resistant crops

Bioengineer by Bioengineer
November 2, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovery of a gene that helps plants control their response to disease could aid efforts to develop crops that are resistant to infection, research suggests.

The findings could lead to ways to fine-tune the gene's activity to boost disease resistance, pointing towards more resilient crop breeds or new treatments for infections.

It could help curb crop losses incurred by plant diseases. These are the leading cause of crop losses worldwide, accounting for 10 per cent of lost produce in key varieties.

Scientists from the University of Edinburgh studied how, when plants are under attack from bacteria or viruses, they produce tiny amounts of a gas known as nitric oxide. This gas accumulates in plant cells and triggers a response from the plant's immune system.

Researchers used a common cress plant, Arabidopsis thaliana, to study the genes that were triggered as nitric oxide levels rose. They found that a previously unknown gene – called SRG1 – is rapidly activated by nitric oxide and is also triggered during bacterial infection.

Further analysis showed that SRG1 unleashes the plant's defence mechanism by limiting the activity of genes that suppress the immune response.

By altering the activity of the SRG1 gene, the team was able to demonstrate that plants with higher levels of defence proteins produced by the gene were more resistant to infection. They also found that nitric oxide regulates the immune response, ensuring the plant's defence system does not over-react.

An overactive immune system damages plants and stunts their growth, in the same way that auto-immune diseases in people cause the immune system to attack the body. Researchers say that similar mechanisms, are likely to be found in many other species, and their findings could enable insights into fundamental processes that underlie immune regulation.

###

The study, published in Nature Communications, was funded by the BBSRC and the National Natural Science Foundation of China.

Professor Gary Loake, of the School of Biological Sciences, who led the study, said: "Our findings provide a missing link between mechanisms that activate and suppress the plant's response to disease. We were surprised to see this might be common to humans too."

Media Contact

Corin Campbell
[email protected]
44-131-650-6382
@edinunimedia

http://www.ed.ac.uk

http://dx.doi.org/10.1038/s41467-018-06578-3

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.