• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New quantum criticality discovered in superconductivity

Bioengineer by Bioengineer
November 2, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S. Department of Energy's Ames Laboratory discovered a new quantum criticality in a superconducting material, leading to a greater understanding of the link between magnetism and unconventional superconductivity.

Most iron-arsenide superconductors display both magnetic and structural (or nematic) transitions, making it difficult to understand the role they play in superconducting states. But a compound of calcium, potassium, iron, and arsenic, and doped with small amounts of nickel, CaK(Fe1-xNix)4As4, first made at Ames Laboratory, has been discovered to exhibit a new magnetic state called a hedgehog spin-vortex crystal antiferromagnetic state without nematic transitions.

"Spin or nematic fluctuations can be considered to play an important role for unconventional superconductivity," said Yuji Furukawa, a senior scientist at Ames Laboratory and a professor of Physics and Astronomy at Iowa State University. "With this particular material, we were able to examine only the magnetic fluctuations, and NMR is one of the most sensitive techniques for examining them." He continued, "using 75As NMR, we discovered that CaKFe4As4 is located at a hedgehog spin-vortex crystal antiferromagnetic quantum critical point which is avoided due to superconductivity. The discovery of the magnetic quantum criticality without nematicity in CaK(Fe1?xNix)4As4 suggests that the spin fluctuations are the primary driver of superconductivity."

Furukawa's discovery was a collaboration between Ames Laboratory's world-leading SSNMR team and the lab's condensed matter physicists, including Paul Canfield, a senior scientist at Ames Laboratory and a Distinguished Professor and the Robert Allen Wright Professor of Physics and Astronomy at Iowa State University.

"This is a new type of magnetic order," said Canfield. "You have this interesting interaction between superconductivity and magnetism from high temperatures in the normal state. This gives us some sense that this high temperature superconductivity may be coming from this near quantum critical antiferromagnetic transition."

###

The research is further discussed in the paper, "Hedgehog Spin-vortex Crystal Antiferromagnetic Quantum Criticality in CaK(Fe1-xNix)4As4 revealed by NMR," authored by Q.-P. Ding, W. R. Meier, J. Cui, M. Xu, A. E. Böhmer, S. L. Bud'ko, P. C. Canfield, and Y. Furukawa; and published in Physical Review Letters.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Laura Millsaps
[email protected]
@Ames_Laboratory

http://www.external.ameslab.gov

https://www.ameslab.gov/news/news-releases/new-quantum-criticality-discovered-in-superconductivity

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.