• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The Mincle receptor provides protective immunity against Group A Streptococcus

Bioengineer by Bioengineer
October 31, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – Group A Streptococcus (GAS), sometimes known as "flesh-eating bacteria," causes invasive infections that result in high mortality. GAS is susceptible to many antibiotics, but continues to cause devastating infections. Many studies have attempted to understand the mechanism for immune recognition of GAS; none has provided a clear explanation, until now.

In a new study published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) , an international research team led by experts from Osaka University investigated a variety of genes activated by the inflammatory components of GAS cells. They found that macrophage inducible C-type lectin (Mincle), an innate immune receptor, was strongly activated by exposure to these components.

GAS is a Gram-positive bacterial pathogen that can cause severe invasive infections, such as streptococcal toxic shock syndrome, necrotizing fasciitis, and bacteremia. Although GAS is sensitive to antibiotics, these infections continue to be associated with high mortality. In the study, the research team clarified the mechanism by which invasive GAS evades the host immune response. This understanding is essential for improving treatment of infections caused by this pathogen.

"We found that GAS produces a glycolipid, 'DGDG', which inhibits the immune receptor activity of Mincle," says Sho Yamasaki, corresponding author on the study. "We suspect that this inhibition contributes to immune evasion by GAS."

In the study, DGDG inhibited activation of Mincle by other GAS proteins in an in vitro assay. In a mouse model of GAS infection, mice without the Mincle receptor showed higher rates of mortality, suggesting that this receptor plays a critical role in the immune response to GAS.

"Our results suggest that blockade of DGDG production by GAS may provide a therapeutic option by increasing the ability of Mincle to initiate antibacterial immunity against invasive GAS," says Takashi Imai, lead author on the study. "We expect that antibacterial drugs can be made to target the enzymes responsible for producing DGDG."

In addition to providing a potential drug target, this increased understanding of the immune evasion mechanism is likely to guide new and improved treatment methods and strategies for combating GAS infection, including potential ligands for inclusion in vaccines against the bacteria.

GAS is a bacterial pathogen that can cause severe invasive infections associated with high mortality. This study clarified the mechanism by which invasive GAS evades the host immune response, and provided critical guidance for new curative and preventive therapies for GAS infections.

###

The article, "Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection," was published in PNAS at DOI: https://doi.org/10.1073/pnas.1809100115.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities.?The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum. Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

https://resou.osaka-u.ac.jp/en/research/2018/20181023_1 http://dx.doi.org/10.1073/pnas.1809100115

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.