• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Biomarkers facilitate early detection of glaucoma

Bioengineer by Bioengineer
October 25, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team headed by Dr. Jacqueline Reinhard and Prof. Dr. Andreas Faissner from the Department of Cell Morphology and Molecular Neurobiology in Bochum, together with colleagues from the University Eye Clinic in Bochum, RWTH Aachen University, the University of Toronto and the University of Denver, has published a report on their findings. The article was released on 12 October 2018 in the online edition of the journal Molecular Neurobiology.

Specific and early intervention

The researchers bred mice in which the gene PTP-Meg2 (protein tyrosine phosphatase megakaryocyte 2) was mutated . As a result, the animals suffered from chronic intraocular pressure elevation. The team successfully demonstrated that, in their model, the intraocular pressure elevation was associated with a loss of optic nerve fibres and retinal cells. Using functional analyses, they observed that retinal cells were unable to function properly, either. Moreover, they made the following discovery: glial cells and certain components of the immune system showed a reaction in the animals' optic nerve and retina. As both aspects may be relevant for neurodegeneration, specific and early intervention into these cellular mechanisms may inhibit glaucoma.

Testing new therapy options

Making use of a genetic screening, the researchers subsequently identified new potential biomarkers. In future, these biomarkers may facilitate early detection of glaucoma; as a result, it will be possible to start therapy at an early stage, before the optic nerve and retina are damaged. The glaucoma-mouse model may, moreover, be used to test new therapy options. Experiments to date have shown that intraocular pressure was reduced and nerve cells were retained in the mice if they were given a drug that had been administered to treat human patients.

###

Info box: Glaucoma

With more than 60 million patients, this eye disease is a main cause of blindness worldwide. In Germany alone, there are one million patients – and the estimated number of unknown cases is likely to be much higher, due to the fact that symptoms often remain undetected during the early stage of the disease. In glaucoma patients, the optic nerve and the retinal nerve cells are damaged beyond repair.

Funding

The German Research Foundation (DFG) financed the study under the umbrella of the project FA 159/14-1 and the Collaborative Research Centre SFB 509 TPA10. Dr. Jacqueline Reinhard was funded by the Research School (DFG: GSC 98/1) at Ruhr-Universität Bochum. Susanne Wiemann was sponsored by Konrad-Adenauer-Stiftung.

Original publication

Jacqueline Reinhard, Susanne Wiemann, Stephanie C. Joachim, Marina Renner, Julia Woestmann, Bernd Denecke, Yingchun Wang, Gregory P. Downey, Andreas Faissner: Heterozygous meg2 ablation causes intraocular pressure elevation and progressive glaucomatous neurodegeneration, in: Molecular Neurobiology, 2018, DOI: 10.1007/s12035-018-1376-2.

Press contact

Dr Jacqueline Reinhard
Department of Cell Morphology and Molecular Neurobiology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Phone: 0234 32 24314
Email: [email protected]

Prof. Dr. Andreas Faissner
Department of Cell Morphology and Molecular Neurobiology
Faculty of Biology and Biotechnology
Ruhr-Universität Bochum
Phone: 0234 32 23851
Email: [email protected]

Media Contact

Raffaela Römer
[email protected]
@ruhrunibochum

http://www.ruhr-uni-bochum.de

http://dx.doi.org/10.1007/s12035-018-1376-2

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.