• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research brief: Predicting how native plants return to abandoned farm fields

Bioengineer by Bioengineer
October 23, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Movement is one of the most common processes in all biology–mice forage for food and geese migrate with the seasons. While plants may be rooted in one spot for most of their lives, movement also plays a key role in their ecology–especially when it comes to seeds.

Tracking how seeds move–or disperse–can be difficult because of a seed's small size. However, in a study published in Ecology, researchers at the University of Minnesota's College of Biological Sciences found a solution for tracking seed movement by using electrical engineering and mathematical models.

"We created a device that measures seed terminal velocity," said Adam Clark, a study co-author and former graduate student at the University of Minnesota. "In this case, terminal velocity describes the maximum speed at which a seed can travel through the air. If we combine this information with other data such as plant height and local wind conditions, we are able to approximate just how far these seeds can travel."

Researchers specifically collected this data for 50 prairie plant species–including big bluestem, rough blazing star and lupine–at the Cedar Creek Ecosystem Science Reserve, a biological field station north of Minneapolis-Saint Paul in Anoka County. The researchers then used that data to examine how natural plant communities recover after agricultural fields are abandoned, based on surveys that cover almost 90 years of changes at Cedar Creek across 23 fields.

As a result of this study, researchers found their estimates of dispersal ability were able to correctly predict the likelihood of colonization, as well as the spatial establishment patterns of many species across these abandoned fields.

"Understanding how seeds move is critical to understanding how plants escape plant-eating animals, find favorable environments away from competition or track changing climates," said Lauren Sullivan, a postdoctoral researcher at the University of Minnesota and the study's lead author.

This method of tracking seed dispersal will allow other researchers to measure dispersal and develop predictions about the importance of plant movement for other commonly studied ecological processes, such as competition, establishment, succession and recovery from disturbance.

###

Funding was provided by the University of Minnesota Graduate Excellence Grant; U.S. National Science Foundation LTER Program (DEB-8114302, DEB-8811884, DEB-9411972, DEB-0080382, DEB-0620652 and DEB-1234162); the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environmental and Natural Resources Trust Fund Grant; NSF Graduate Research Fellowship (00006595); and by the Balzan Prize Foundation.

About the College of Biological Sciences

The College of Biological Sciences at the University of Minnesota is one of two colleges in the United States dedicated to the biological sciences with undergraduate majors and graduate programs that cover the spectrum of life from molecules to ecosystems.

Media Contact

University of Minnesota Public Relations
[email protected]
612-624-5551
@UMNews

http://www.umn.edu

https://twin-cities.umn.edu/news-events/research-brief-predicting-how-native-plants-return-abandoned-farm-fields

Related Journal Article

http://dx.doi.org/10.1002/ecy.2498

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.