• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Salk scientists advance ultrasound technology for neurological therapy

Bioengineer by Bioengineer
October 22, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA–(October 22, 2018) The emerging technology of sonogenetics–a technique where cells are controlled by sound–offers the potential to one day replace pharmaceutical drugs or invasive surgical treatments for neurological conditions like epilepsy, Parkinson's disease or posttraumatic stress disorder.

The Salk Institute scientist who pioneered the idea of using ultrasonic waves to stimulate neurons and coined the term "sonogenetics" will participate in the Defense Advanced Research Projects Agency's ElectRx program, aiming to take his lab's work to the next level with $750,000 in new funding.

"We initiated this project about six years ago, when we first brought ultrasound into the laboratory to study a biological system," says Salk Associate Professor Sreekanth Chalasani, the principal investigator of the grant. "We wanted to know whether ultrasound could stimulate behavior in the nematode–a simple organism whose basic neurological circuitry has similarities to our own–and, strikingly, we found that it could."

In 2012, Chalasani received a Salk Innovation Grant to explore his idea of genetically engineering neurons in the worm to respond to sound waves. He first demonstrated the technique on nematodes in 2015, showing that low-intensity ultrasound waves propagating into the worms caused a chemically sensitive molecular channel called TRP-4 to open and activate brain cells. His team then used molecular biology techniques to add the TRP-4 channel to neurons that don't usually react to ultrasound, successfully activating them and influencing the worms' behavior. The lab leveraged the early success of their approach into a grant from the National Institutes of Health's (NIH) Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to explore additional molecular channels that could be targeted with ultrasound. The team also showed the technique works in a mouse model.

Before the development of sonogenetics, scientists used a tool called optogenetics to stimulate neurons with light. While optogenetics continues to be a highly valuable tool for neuroscience research, the approach has some therapeutic limitations.

"With optogenetics, you need to surgically implant some sort of probe or light-emitting device in or very near the tissue that you are targeting," says Yusuf Tufail, a research scientist in the Chalasani lab. "But with sonogenetics, you don't need surgery, because the genetic components that make neurons sensitive to ultrasound can be delivered via therapeutic viruses, and then the ultrasound stimulation is applied from outside the body, just like a pregnancy ultrasound."

Now, the team aims to search for additional proteins that will respond to ultrasound–but rather than activate neurons, these proteins would inhibit cells. Methods to both noninvasively inhibit as well as activate neurons have immense potential for therapies.

"Sonogenetics is a very exciting way in which we could potentially treat different neurological conditions without having to invasively implant electrodes into patients," says Corinne Lee-Kubli, a research associate in the Chalasani lab. "Parkinson's disease, neuropathic pain, PTSD and movement disorders, such as paralysis, could theoretically all benefit from a sonogenetics approach."

With this new support, the team will build novel, custom-made instruments to develop and assess the technology.

Adds Chalasani, "We are excited with the results that we have obtained. We're excited with the prospects of this technology, which we think could revolutionize the fields of both neuroscience and medicine."

###

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
[email protected]
858-453-4100
@salkinstitute

Salk Institute for Biological Studies

https://www.salk.edu/news-release/salk-scientists-advance-ultrasound-technology-for-neurological-therapy/

Share12Tweet7Share2ShareShareShare1

Related Posts

Vitamin D Deficiency: A Hidden Cause of Childhood Fatigue

September 20, 2025

Telehealth Boosts Same-Day Access to Mental Health

September 20, 2025

U of A and UNM Secure $43.6M NIH Grant to Advance Translational Clinical Research

September 19, 2025

Peace Talks Between Türkiye and the PKK Present a Historic Opportunity for Environmental Restoration

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vitamin D Deficiency: A Hidden Cause of Childhood Fatigue

Dragon Fruit Farming: Challenges and Insights from India

Telehealth Boosts Same-Day Access to Mental Health

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.