• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mechanics of birds’ nests subject of NSF research

Bioengineer by Bioengineer
October 22, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Hunter King, The University of Akron

Some of the best engineering, it turns out, is done by bird brains.

That is, the engineering feats of birds baffle the human brain, their elaborate and resilient nests held together by twigs, leaves, grass, stones and sundries, in ways that physicists have hardly begun to understand, let alone emulate.

That's why Hunter King, experimental soft matter physicist and assistant professor of polymer science and biology at The University of Akron (UA), has received a three-year, $260,000 grant from the National Science Foundation's (NSF) Division of Civil, Mechanical and Manufacturing Innovation to study the collective mechanical interactions of disordered, randomly packed elastic filaments, or slender rods similar to twigs. Understanding these complex interactions could lead to innovations in civil engineering and architecture, transportation and advanced manufacturing.

In their abstract submitted to the NSF, King and his collaborators from the University of Illinois at Urbana-Champaign (Illinois) explained that the bird's nest, which "reliably holds its shape against various mechanical perturbations … is the result of a subtle interplay between geometry, elasticity, and friction that has not yet been characterized or modeled despite its potential in building, packaging, self-repairing, shock-absorption, and material reusability."

In the emerging field of "aleatory architecture" (from the Latin word for "dice"), for example, granular materials – analogous to the components of nests – are poured into a mold until they jam together into a structurally stable, load-bearing form, such as an arch. Also, King added, nests are lightweight, soft, flexible and shock-absorbent, but made up of hard, durable components – properties which are ideal for packaging materials.

"If these principles could be applied to, say, packing of things to be transported, you could conform the packaging material to the shape of the thing it's supposed to hold – like a nest that you place some fragile thing in," he said. "If we can understand how the shock-absorbing behavior of this collective material works, we can manipulate it to accommodate different geometries. To some extent, that's kind of what the birds do. They make a shape that is going to absorb certain perturbations, and keep the eggs in the middle of it."

To better understand these principles, King's graduate assistant Nicholas Weiner is conducting a series of coordinated physical and computational experiments to analyze the behavior of disordered, randomly packed filaments in response to pressure, shaking and other perturbations. He hopes to characterize this behavior and coordinate with the collaborators at Illinois who will attempt to duplicate his findings through computer simulations.

King – a member of UA's Biomimicry Research and Innovation Center, an interdisciplinary center dedicated to innovation inspired by nature – is also planning to observe the feathered physicists themselves, toiling in their arboreal labs. He hopes to collaborate with the Akron Zoo to set up cameras and record the birds at work.

"We want to see evidence of a particular protocol being used in making this work," he said. "There's likely a kind of built-in intuition that depends on these things that we haven't been able to put our finger on yet."

Some of those things, though, are far beyond the wingspan of his current research.

"A lot of these nests are way more complicated than we're really willing to think about," he said. "In some of them, the birds tie formal knots. … That's a different thing."

###

Media Contact

Lisa Craig
[email protected]
330-972-7429
@UAkronNews

http://www.uakron.edu/

Original Source

https://www.uakron.edu/im/news/feathers-filaments-and-physics-scientist-studies-mechanics-of-birds-nests

Share12Tweet8Share2ShareShareShare2

Related Posts

Turning Oyster Shells into Conservation Tools: Archaeology’s Innovative Approach to Sustainability

Turning Oyster Shells into Conservation Tools: Archaeology’s Innovative Approach to Sustainability

November 4, 2025
Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025

Pond Management Strategies Could Boost Native Salamander Conservation

November 4, 2025

New Study Explores the Impact of Mucus Plugs in COPD Development

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Research Reveals Light’s Power to Reshape Atom-Thin Semiconductors for Advanced Optical Devices

Microscopic Swarms, Massive Potential: Engineers Develop Adaptive Magnetic Systems for Healthcare, Energy, and Environmental Solutions

Fiber Optics Enter a New Era for In-Depth Exploration of Brain Circuits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.