• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New agent against anthrax

Bioengineer by Bioengineer
October 22, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team led by Professor Arne Skerra at the Technical University of Munich (TUM) has developed an innovative strategy for preventing the anthrax bacterium from absorbing iron, which is crucial for its survival. It does so by neutralizing a special iron complexing agent produced by the bacterium. Because the anthrax pathogen only spreads in the body when it receives access to the essential element, this is expected to provide an effective treatment against the life-threatening infection.

Anthrax is a disease caused by bacteria. Although the pathogen responsible for anthrax can be treated with antibiotics, the toxin which it releases in the body is particularly dangerous. If the infection is recognized too late, it is often lethal.

The anthrax pathogen can survive in the soil for decades in the form of spores. Grazing livestock, such as cows or sheep, ingest the spores and become infected with anthrax. Persons who work with these livestock animals or with animal products may become infected; however, it is very rare for anthrax to occur in animal herds in Germany today.

Furthermore, humans may also become infected with the illness if the meat of infected animals is not sufficiently heated. In late August of this year, livestock in the southeast of France became infected with anthrax – the most serious outbreak in 20 years, according to the French media. Populations of chimpanzees and gorillas living in the wild are also endangered by anthrax.

Today, anthrax constitutes a global threat primarily due to its potential use as a bioweapon. In 2001, several letters with anthrax spores were distributed in the United States of America. Five people died at the time.

Inactivation of the iron transporter

Just like any cell in the body, bacteria require the essential trace element iron. However, in body fluids, iron is tightly bound to proteins and, therefore, not easily available. Accordingly, bacteria produce special complexing agents called siderophores (iron carriers) in order to bind the few available iron ions and subsequently absorb them via their own import systems. The human immune system prevents this via a protein that circulates in the blood called siderocalin. It has a high affinity for common iron siderophores and scavenges them, allowing them to be removed via the kidneys.

Petrobactin is a peculiar iron carrier produced by the anthrax pathogen which is not recognized by siderocalin. The aim of Prof. Skerra from the Department of Biological Chemistry was to disable this anthrax siderophore, thereby inhibiting the reproduction of the anthrax pathogen. With the aid of Anticalin® technology, which was developed by his department, he and his team were able to reconstruct the body's own siderocalin. The result was "petrocalin," which is able to neutralize the anthrax pathogen's siderophore.

"The newly developed petrocalin captures petrobactin, thereby depriving the anthrax pathogen of access to vital iron and acting as a protein antibiotic," says Skerra. "In collaboration with Professor Siegfried Scherer from the Department of Microbial Ecology, we have been able to demonstrate that this approach works in bacterial cultures."

Skerra's strategy opens up a new avenue of treatment for anthrax infections by effectively suppressing the spread of the bacterium in the patient's body. The biochemical and protein structure analyses will be published by Skerra and his colleagues in the internationally renowned journal Angewandte Chemie, also providing insight into the molecular mechanisms.

###

More Information:

Rather than the actual human pathogen, a weakened laboratory strain was utilized for the study herein described.

Publication:

Martin Dauner, Andreas Eichinger, Genia Luecking, Siegfried Scherer and Arne Skerra: Reprogramming Human Siderocalin to Neutralize Petrobactin, the Essential Iron Scavenger of Anthrax Bacillus, Angew. Chemie Int. Edition 2018. DOI: 10.1002/anie.201807442

Contact:

Prof. Dr. Arne Skerra
Technical University of Munich
Chair of Biological Chemistry
Phone.: +49 8161 71 4351
Mail: [email protected]

Media Contact

Stefanie Reiffert
[email protected]
49-089-289-10519
@TU_Muenchen

http://www.tum.de

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35012/

Related Journal Article

http://dx.doi.org/10.1002/anie.201807442

Share12Tweet7Share2ShareShareShare1

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.