• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Taking steps toward a wearable artificial kidney

Bioengineer by Bioengineer
October 17, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

There just aren't enough kidney transplants available for the millions of people with renal failure. Aside from a transplant, the only alternative for patients is to undergo regular dialysis sessions to clear harmful cellular waste from their bodies. Now, scientists report in ACS Nano a new urea sorbent that could accelerate progress toward the development of a lightweight, wearable artificial kidney with the potential to make dialysis more convenient, comfortable and effective.

Dialysis typically requires three visits every week to a health care center, where patients are tethered to a machine for hours. Not only is this cumbersome, but health outcomes with the treatment are poor. The problem is that kidneys filter blood around the clock; dialysis just can't do as good of a job when performed for only a few times each week. Scientists are eager to develop an artificial kidney that could be worn all the time, continuously performing dialysis. One obstacle, though, is urea, which must be removed to maintain the body's nitrogen balance. Currently, dialysis deals with urea using an enzyme that breaks the molecule down into ammonia and carbon dioxide, but the amount of material required to perform this reaction is too big and heavy to be comfortably worn on the body. So, Babak Anasori, Yury Gogotsi and colleagues wanted to try a new approach.

The researchers turned to an emerging nanomaterial called MXene, two-dimensional nanosheets of metal carbides. Instead of breaking down urea, MXene can capture the compound by sandwiching urea molecules between its nanometer-thin layers. At room temperature, the material could capture 94 percent of urea from the discarded materials from dialysis machines. When tested at body temperature (98.6 F), the material could hold onto even more urea. Furthermore, MXene did not kill cells, suggesting that it could be safely used in people. The researchers conclude that the material could help turn the concept of a comfortably wearable artificial kidney into a reality.

###

The authors acknowledge funding from the NOMAD project supported by the British Council and the U.K. Department for Business, Innovation & Skills through the Global Innovation Initiative and the U.S. Department of Energy.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

October 8, 2025

Selecting Teams for Mars Missions

October 8, 2025

Tarlatamab vs. Comparators in Advanced Small Cell Lung Cancer

October 8, 2025

Repeated Brain Tumor Sampling Reveals Treatment Response in Glioblastoma Patients

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1113 shares
    Share 444 Tweet 278
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

Southward Impact Excavates Lunar Magma Ocean

Selecting Teams for Mars Missions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.