• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sleeping beauty helps identify genes involved in a fatty liver-associated liver cancer

Bioengineer by Bioengineer
October 17, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – With an estimated twenty-thousand protein-coding genes in the human genome, pinpointing a specific gene or pathway responsible for a particular disease can be like finding a needle in the proverbial haystack. This has certainly been the case for hepatocellular carcinoma (HCC), with studies identifying more than ten thousand mutations in the cancer genomes of HCC patients, making it extremely difficult to develop targeted therapies.

In addition to being the second most lethal form of cancer worldwide, increasing numbers of people are diagnosed with HCC each year. A major emerging risk factor for this type of liver cancer, particularly in Western countries, is non-alcoholic fatty liver disease (NAFLD), characterized by excess fat storage in the liver. Linked to a high-fat diet and type 2 diabetes, damage caused to the liver by NAFLD is likened to that seen in cases of serious alcohol abuse.

Given the lack of treatment options and poor prognosis for HCC patients, research teams led by Osaka University set out to identify genes driving the development of NAFLD-HCC. "We used a new technology to comprehensively search for oncogenes in individual animals by large-scale screening of genes and signal transduction pathways that contribute to the development of liver cancer associated with fatty liver disease," explains Tetsuo Takehara, co-author of a recent study published in Proceedings of the National Academy of Sciences of the United States of America.

This new technology involves small, mobile DNA sequences–charmingly named Sleeping Beauty transposons–that were randomly integrated into the genome in two separate mouse models of NAFLD. Transposon insertion disrupts genes normally involved in tumor suppression or activates nearby oncogenes, allowing researchers to identify potential HCC-causing genes by accelerated or excessive liver tumor development in affected mice.

"Amongst hundreds of candidate genes, we discovered that Sav1, a component of the Hippo pathway, was the most frequently mutated gene in both Sleeping Beauty screens," says leading author Takahiro Kodama. Interestingly, Sav1 and the Hippo pathway are involved in the regulation of organ size. If this pathway is disrupted, liver progenitor cells replicate uncontrollably, leading to tumor formation.

The researchers noted significant liver damage and accumulation of proteins involved in tumor formation in NAFLD mice with a deletion of the Sav1 gene, suggesting they had found their "needle". "Although we knew that deletion of Sav1 leads to liver enlargement and the development of liver tumors, these new findings provide a key link between dysregulation of the Hippo pathway and the development of HCC in NAFLD," says Kodama. "Knowing this, we can potentially develop new liver cancer treatments targeting the Hippo pathway."

###

The article, "Molecular profiling of non-alcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis", was published in Proceedings of the National Academy of Sciences of the United States of America at DOI: https://doi.org/10.1073/pnas.1808968115.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

https://resou.osaka-u.ac.jp/en/research/2018/20181016_1 http://dx.doi.org/10.1073/pnas.1808968115

Share12Tweet7Share2ShareShareShare1

Related Posts

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

October 8, 2025

Selecting Teams for Mars Missions

October 8, 2025

Tarlatamab vs. Comparators in Advanced Small Cell Lung Cancer

October 8, 2025

Repeated Brain Tumor Sampling Reveals Treatment Response in Glioblastoma Patients

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1113 shares
    Share 444 Tweet 278
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prone Positioning Insights: ICU Nurses’ Knowledge and Attitudes

Southward Impact Excavates Lunar Magma Ocean

Selecting Teams for Mars Missions

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.