• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A selfish gene makes mice into migrants

Bioengineer by Bioengineer
October 16, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

House mice carrying a specific selfish supergene move from one population to another much more frequently than their peers. This finding of a University of Zurich study shows for the first time that a gene of this type can influence animal migratory behavior. It could help in dealing with invasive plagues of mice.

Usually the cooperation of genes helps an organism to grow and flourish. But some genes are pursuing a different agenda: Their aim is to propagate themselves by eliminating other genes. One of these selfish supergenes is called the t haplotype. It's a complex of various inherited genes that occurs naturally in house mice. "When it comes to heredity, this supergene gains an unfair advantage over other genes," explains Jan-Niklas Runge, first author of the study and a doctoral candidate in evolutionary biology at the University of Zurich. Any gene should actually have a fifty-fifty chance of being transferred to offspring. But sperm that carry the supergene poison rival sperm of the same animal to increase their probability of fertilization to 90 percent. Similar mechanisms can be found in other organisms such as fruit flies and corn.

Supergene carriers emigrate

The researchers have now conducted a long-term study to find out how this supergene affects the migratory behavior of house mice. This involved keeping precise records of comings and goings in four groups of free-ranging wild house mice in a barn near Zurich. With the help of genetic analyses, radio transmitters and regular headcounts, they were able to demonstrate that carriers of the t haplotype were more likely to switch between groups or leave the barn completely. The probability of migration of this sort was almost 50 percent higher than with normal animals. The study focused on young individuals representing the typical age group for house mice when they migrate.

Self-preservation

The scientists believe that the supergene manipulates the mice's behavior in this way to enable it to propagate further and further. Moreover, this migration probably also ensures that the t haplotype is preserved in the house mice's gene pool: If the supergene gets the upper hand in a population, it can lead to its own eradication. For example, mice that receive two copies of the supergene (from their father and their mother) are no longer viable. Apart from this, supergene sperm have trouble asserting themselves in competition with normal sperm if a female mates with several males during the same ovarian cycle. "This means that large populations with a lot of competition for females that are ready to mate, and populations with a high percentage of t haplotype carriers, are fairly bad for the supergene," explains Runge. "This is probably why carriers of the supergene emigrate and join populations where they have a better chance of propagation." This hunch is confirmed by the study findings: The larger the population, the more pronounced the migratory behavior observed. This would also explain why despite all the handicaps, the supergene has managed to survive in the mice's genetic material for some two million years. The UZH researchers are now working on computer simulations and additional experiments to verify this hypothesis.

Containing invasion

Biologists in other research groups are already planning to use this supergene to control invasive house mice. If these animals multiply uncontrolled in places where they're not indigenous, they can throw the entire ecosystem out of balance. For this reason researchers want to manipulate the genetic material of these mice to make them infertile. The idea is that the supergene would then help this modification spread within the population as quickly as possible. "Our insights are very important in this context, and could help develop a safe and reliable method to combat invasions of this sort," hopes Runge.

###

Media Contact

Jan-Niklas Runge
[email protected]
41-446-355-277
@uzh_news

http://www.uzh.ch

https://www.media.uzh.ch/en/Press-Releases/2018/Supergen.html

Related Journal Article

http://dx.doi.org/10.1098/rspb.2018.1333

Share12Tweet7Share2ShareShareShare1

Related Posts

Revolutionizing Camel Husbandry with ICT Monitoring System

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025
Global Research Team Unveils Framework to Study ‘Earth Engineers’

Global Research Team Unveils Framework to Study ‘Earth Engineers’

September 23, 2025

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025

Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rice PYL Receptors, ABA, and NF-Y: Drought Insights

New Triazole-Oxazole Hybrids Target p53–MDM2 Pathway

Revolutionizing Camel Husbandry with ICT Monitoring System

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.