• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new mechanism for how animal cells stay intact

Bioengineer by Bioengineer
October 12, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Manu Prakash

Almost eight years ago, Stanford University bioengineer Manu Prakash was looking for a way to watch every cell in an adult living, behaving animal in elaborate detail. He searched the catalog of life and happened upon the simple marine animal Trichoplax adhaerens – or Tplax, as Prakash has come to call it.

This ultra-flat animal lacks both muscles and neurons, but still moves and navigates through its watery world. The Prakash lab found Tplax manages this feat through surprisingly fast contractions in its two skin-like layers – contractions strong enough that they would ordinarily rip apart such seemingly delicate tissues. In their first paper based on years-long study of this organism, published Oct. 11 in Proceedings of the National Academy of Sciences, the researchers describe the ultra-fast contractions and propose a hypothesis for how this creature withstands internal and external forces in a marine environment.

The findings could help inform not only how complex animals evolved, but also the creation of an advanced material, called an active solid, that could dramatically and quickly modulate its own physical properties.

"Much of the rules of biology that we read in textbooks have been, so far, dictated by a few sets of 'model' organisms," said Prakash, who is an associate professor of bioengineering and senior author of the paper. "If we intend to be the generation that will unravel laws of biology, it's extremely important to understand and appreciate the diversity of what has evolved on our planet and think much more holistically about what is actually possible in biological systems."

Moving without muscles

In the early days of studying Tplax, the creatures would move repeatedly out of view under the microscope. But over time, the Prakash lab researchers learned to track and quantify the animals' every cellular squeeze and squirm. Prakash remembers when their efforts first began to pay off.

"There was literally a day where, for the first time, I had some of the stains that label Tplax cells working, and under the microscope we saw an explosion of cellular contractions," said Prakash. "It looked like fireworks under a microscope and that was the moment that told us there is something very special about this animal and we needed to understand it."

Those fireworks were Tplax's quick contractions, which occur in its flat layer of what are known as epithelial cells – essentially the equivalent of skin. Although these kinds of cells have long been known to contract, in embryos for example, Tplax's contractions were 10 times faster than any epithelial cell contraction ever reported. This would tear apart the network of cells in any other biological tissue as thin as this animal, which is only about 25 microns thick, or one-quarter the thickness of a sheet of paper.

The researchers think the tissue's strength lies in the fact that while some cells contract strongly, others soften – a hypothesis they call "active cohesion." In many tissues, contracting in reaction to a force would cause a tear and relaxing would cause the animal to be at the mercy of that force. By doing both simultaneously and in a coordinated manner, the cells involved in Tplax's active cohesion distribute the stress, letting the animal remain whole and in control.

The discovery of an ultra-fast contractile epithelial cell poses new questions for the role of epithelial contractions in coordinating cellular activity across the tissue.

"We look at this simple creature and we see it make decisions and move and hunt," said Shahaf Armon, a postdoctoral fellow in the Prakash lab who is lead author of the paper. "It's a huge evolutionary question, how single cells merged to become multicellular organisms and how such a minimal tissue made of identical cells is able to then perform complex behaviors."

Now, the researchers are exploring what other organisms might use active cohesion and are creating artificial material that replicates this mechanism to build an active solid. Key to the speed of these contractions is the unusual geometry of Tplax's epithelial structure: T-shaped cells with a very thin top sheet and a hanging nucleus at the bottom that line up side-by-side like a single layer of bricks. That geometry, which they share with sponges, could inform the development of new materials.

Mysterious beasts

Working with laboratory lineages and animals they caught themselves in Monterey, the group grew Tplax in a wide variety of sizes and shapes, creating animals that are hundreds to millions of cells. This variation in size provides a powerful window into understanding how cellular coordination varies as the number of cells increase or decrease.

"Tplax are really mysterious beasts," said Matthew Bull, a graduate student in the Prakash lab and co-author of the paper, "but we use that to our advantage to find where our understanding of what it means to be part of the animal kingdom bends and then breaks."

###

Andres Jesus Aranda-Diaz is also co-author of this paper. Prakash is a member of Stanford Bio-X and of the Stanford Center for Innovation in Global Health, an affiliate of the Stanford Woods Institute for the Environment and a fellow of Stanford ChEM-H.

This work was funded by the Gruss Lipper Postdoctoral Fellowship, the Israeli Council for High Education, an HHMI-Gates Faculty Scholar award, a Pew Fellowship, a National Institutes of Health Directors Award and the Chan-Zuckerberg BioHub Investigators Program.

Media Contact

Taylor Kubota
[email protected]
650-724-7707
@stanford

ZZZ – DO NOT EDIT – News Page

Related Journal Article

http://dx.doi.org/10.1073/pnas.1802934115

Share12Tweet8Share2ShareShareShare2

Related Posts

Gene Analysis Uncovers Metal Exposure in Synechococcus

Gene Analysis Uncovers Metal Exposure in Synechococcus

September 22, 2025
Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

Ultrasound Guidance Significantly Reduces IUD Insertion Time Compared to Conventional Methods

September 22, 2025

“‘Youth Molecule’ Shows Promise in Enhancing Quality of Life for Older Adults, Clinical Studies Reveal”

September 22, 2025

Ancient Defense Meets Modern Science: How Conifers Protect Themselves From Predators

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin Combinations Show Promise in Lung Cancer

sRAGE Levels in Obese Adolescents with Metabolic Syndrome

Creating Liquid Bio-Fertilizer from Citrus, Bananas, and Eggshells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.