• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Effects of epilepsy on neural activity in mice fluctuate with reproductive cycle

Bioengineer by Bioengineer
October 12, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by L. Brian Stauffer

CHAMPAIGN, Ill. — Mice with epilepsy have altered patterns of neuron activity in the portion of the brain that controls the reproductive endocrine system, University of Illinois researchers report in a new study. Furthermore, the differences in neuron activity in female mice fluctuate across the reproductive cycle, the team found.

The study, which tracked hormone levels and activity in specific neurons that trigger the release of reproductive hormones in mice with epilepsy, demonstrates that the effects of epilepsy on other areas of the brain may not be as static as researchers have thought, said study leader Catherine Christian, a professor of molecular and integrative physiology at Illinois. The study was published in the journal eNeuro. Jiang Li, a graduate student at the U. of I., was the lead author of the study.

People with temporal lobe epilepsy – the most common type affecting adults – also have high rates of problems with their reproductive endocrine systems, though the connection is poorly understood.

"Endocrine disruptions are a prominent comorbidity with epilepsy, yet there haven't been good basic research studies done to start to tease apart what's happening in the brain to drive this connection," Christian said. "If we can identify the neural mechanisms that are happening in the brain to link epilepsy and reproductive endocrine disruptions, can that give us a new target and, perhaps, a chance of better treating the epilepsy as well?"

Christian's research group studied a mouse model of epilepsy commonly used in research. Though not a perfect analog of human epilepsy, it has many similarities, including spontaneous, localized seizures and – as Christian's group demonstrated in another recent study – a high probability of endocrine disruption.

"The advantage of working in a mouse model is that we can directly record from specific neurons and look at the changes in their activity, comparing epileptic mice with those that don't have epilepsy," Christian said. The researchers also compared males with females, as well as comparing female mice with epilepsy that developed estrous cycle disruptions with those that maintained normal cycles – groups never before compared in a study of epilepsy, Christian said. The mouse estrous cycle is similar to the human menstrual cycle, although only a few days in length.

The researchers tracked hormones in the animals' blood and saw that while testosterone levels remained unaltered in male mice, female mice with epilepsy showed significant changes in levels of the hormones estradiol and progesterone.

Then the researchers studied the firing activity of the specific neurons in the brain that trigger the body to release reproductive hormones. Across the board, neurons from mice with epilepsy were more excitable, meaning more likely to fire in response to incoming signals. However, neuron firing activity varied among the groups. Of the epileptic mice, males and females without endocrine disruptions showed small changes in firing activity compared with the control group. However, female epileptic mice with endocrine disruptions had dramatic shifts in firing activity that fluctuated across the cycle.

In female control mice, the hormone-signaling neurons had high rates of firing during one stage of the estrous cycle and lower rates of firing during another stage. However, in female mice with epilepsy and endocrine disruptions, the opposite pattern emerged.

"There are many fluctuations and dynamic changes going on during the female cycle, and signals in the mice with epilepsy are going in the wrong direction at the wrong time," Christian said. "We usually think of neurological changes correlated with epilepsy going in one direction – too much or too little – at a static rate, and tailor treatments to correct that. But here, we show that one neuron population has big fluctuations in activity. At one stage of the cycle, they're showing higher rates than what would be expected, but at another point in the cycle their activity is strongly suppressed."

Next, the researchers plan to investigate activity both downstream from the neurons – the pituitary gland and reproductive organs – and upstream, attempting to trace the cause of the changes in neuron firing back to seizure activity.

"Investigating changes in neural activity and understanding that it may not be static or always in one direction is very important, not only for understanding basic research findings in animals but for developing new therapies as well," Christian said. "This study shows that the effects of epilepsy on the neural control of reproduction is not a one-size-fits-all thing. Having a picture of the overall endocrine status could be very important in understanding why a certain treatment isn't effective. For women with epilepsy, we probably need to be more sensitive to timing treatments to certain phases of the menstrual cycle."

###

The National Institutes of Health and the Beckman Institute for Advanced Science and Technology, which Christian is affiliated with, supported this work.

Editor's notes: To reach Catherine Christian, call (217) 244-8230; email: [email protected].

The paper "Dynamic and sex-specific changes in gonadotropin-releasing hormone neuron activity and excitability in a mouse model of temporal lobe epilepsy" is available online.

DOI: 10.1523/ENEURO.0273-18.2018

Media Contact

Liz Ahlberg Touchstone
[email protected]
217-244-1073
@NewsAtIllinois

http://www.illinois.edu

Original Source

https://news.illinois.edu/view/6367/704835 http://dx.doi.org/10.1523/ENEURO.0273-18.2018

Share12Tweet7Share2ShareShareShare1

Related Posts

Food Focus in Binge Eating: Training Limitations Revealed

November 5, 2025

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

November 5, 2025

Resveratrol Activation of SIRT1 Reduces Trophoblast Pyroptosis

November 5, 2025

MIT Study Identifies Promising Targets for Next-Generation Tuberculosis Vaccine

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food Focus in Binge Eating: Training Limitations Revealed

Double Disadvantage: The Impact is Greater Than Twice as Severe

Oxidative Stress Linked to Abnormal Repetitive Behaviors in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.