• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Molecular details of protein reveal glimpse into how kidney stones form

Bioengineer by Bioengineer
October 10, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Ruth Pumroy, University of Pennsylvania

PHILADELPHIA – Kidney stones–solid, pebble-like grit that forms when too much of certain minerals like calcium are in the urine–can strike men, women, and increasingly, children, and the presence and pain of stones afflicts more than 12 percent of the world's population. Using the 2017 Nobel Prize-winning technique of cryo-electron microscopy (cryo-EM) to capture a high-resolution image of an ion channel protein, called TRPV5, that removes calcium from urine, researchers from the Perelman School of Medicine at the University of Pennsylvania, Rutgers University Medical School, and Temple University, found fresh clues as to how kidney stones form.

With new information gained from TRPV5's molecular structure, researchers will now be able to use bioinformatics to discover compounds that interact with TRPV5 to treat and prevent kidney stones in at-risk populations. The team published their findings in Nature Communications.

Led by Vera Moiseenkova-Bell, PhD, an associate professor of Systems Pharmacology and Translational Therapeutics, the team captured an image of the TRPV5 ion channel protein in both an open and closed state. All cells have channels in their outer membranes that allow for the flow of small ions such as sodium, potassium, or calcium. This two-way movement aids in many roles for example, triggering an immune response, communicating between brain cells, and filtering by the kidney.

Close to 99 percent of calcium is reabsorbed by kidney tubules, and TRPV5 is only made in the cells that line tubules where calcium level in the urine is maintained. Most kidney stones contain calcium, and too much calcium in urine predisposes people to the formation of these painful deposits.

Cryo-EM uses an electron beam to take thousands of snapshots of individual frozen protein molecules. Algorithms then combine the multiple images to sharpen the overall picture of a molecular structure. Using these images, Moiseenkova-Bell, who is also director of Penn's Beckman Center for Cryo-Electron Microscopy, and her team revealed the TRPV5 structure to answer questions about the protein's physiological role in disease.

"We were able to see, for the first time, how this protein opens by activating membrane lipids," said co-first author Taylor Hughes, a graduate student in Moiseenkova-Bell's lab. "Many proteins are regulated in a similar way, so our structure lays the groundwork for understanding this process in other settings."

Postdoctoral fellow and co-first author Ruth Pumroy, PhD, adds that the team also discovered the structure of a closed channel in the presence of a protein called calmodulin, which directly plugs the pore of the channel without causing the pore to move. "This revealed a unique mechanism of TRPV5 inhibition which could be useful for finding novel binding partners and drug discovery," said Pumroy.

Rutgers coauthor Tibor Rohacs and co-first author Aysenur Yazici, a graduate student in his lab, verified predictions of how the channel works by changing individual amino acids in the TRPV5 structure to see if the flow of calcium through the altered channel would differ. When amino acids in contact with a lipid in the TPRV5 structure were altered, TRPV5 did not allow calcium to flow into the cell. When another TPRV5 amino acid was changed in the channel, the inhibitory effect of calmodulin disappeared. The collaborators at Temple used sophisticated computer programs to further validate the findings.

###

This work was supported by the National Institutes of Health (R01GM103899, P30EY11373, 1S10RR23057, 1S10OD018111), the National Science Foundation (DBI-1338135), and the National Cancer Institute's National Cryo-EM Facility (HSSN261200800001E).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center — which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report — Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

Media Contact

Karen Kreeger
[email protected]
215-459-0544
@PennMedNews

http://www.uphs.upenn.edu/news/

Share12Tweet8Share2ShareShareShare2

Related Posts

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

February 7, 2026

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.