• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How to make fish shine

Bioengineer by Bioengineer
October 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the University of Bath have helped to figure out why shoals of fish flash silver as they twist through the water by studying how the shiny silver cells are created in zebrafish.

In mammals, including humans, there is only one pigment cell-type; the melanocyte. These cells are usually black or brown, are responsible for colouring both skin and hair, and underlie the skin cancer melanoma.

However fish form multiple pigment cell-types, not just the melanocytes. In zebrafish, in addition to black melanocytes, the body is coloured by yellow xanthophores, and by shiny, silver cells called iridophores.

The question of how different cells arise is a major question in stem cell and developmental biology, and this work from the laboratory of Prof. Robert Kelsh in the Department of Biology & Biochemistry sheds light on this question.

Prof. Kelsh's group study the zebrafish, a small tropical fish, principally because they are easy to work with, are accessible for genetic manipulation, and have beautifully transparent embryos. This allows scientists to study cells of interest easily.

The different types of pigment cells derive from a type of stem cell called a neural crest cell, that also makes diverse types of neurons and skeletal cells, amongst others.

In this latest paper the lead author, Dr Kleio Petratou, and her colleagues used an unusual combination of genetic techniques and mathematical modelling to identify how a series of key genes interact and drive a neural crest cell to become a silver iridophore.

The key genes were identified by genetic manipulation, demonstrating that when their function is lost, iridophores cannot be formed. But that didn't explain how these genes worked together, a process made more difficult by the fact that neural crest cells migrate through the body extensively during the process of their development.

By using painstaking assessment of genetically-altered zebrafish and a rigorous focus on interpretation of the state of cells as they migrate, they were able to dissect the functional relationships between these genes, identifying what is known as a gene regulatory network (a kind of genetic wiring diagram) underpinning how a neural crest cell decides to become an iridophore.

Prof. Kelsh's team used one other technique, mathematical modelling, to refine that network. Working with colleagues from the University of Surrey, they developed a series of simple mathematical models depicting alternative ways in which the network might be organised, and used computer simulations of their behaviour to identify a strongly favoured variant.

Dr Petratou said: "The combination of the sorts of detailed developmental genetics that the zebrafish allows, with rigorous mathematical modelling, really helped us discover the genes at the core of iridophore formation and to identify the structure of their interaction, in a way that simple genetics alone would not have allowed."

Professor Kelsh added: "We are now in an excellent position to integrate this data with similar interdisciplinary studies on melanocytes, in order to understand how stem cell fate choice really works."

This approach has widespread application throughout stem cell biology, as well as showing how fish can shine.

The study is published in PLOS Genetics.

###

The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and by University of Bath studentship to Dr Petratou.

Animal research at Bath

The University of Bath has signed the Concordat on Openness on Animal Research. The University is committed to enhancing our communications with the media and public about our research using animals. Find out more: http://www.bath.ac.uk/collections/animal-research/

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 4th in the Times Higher Education Student Experience Survey 2018.

Media Contact

Chris Melvin
[email protected]
44-012-253-83941
@uniofbath

http://www.bath.ac.uk

https://www.bath.ac.uk/announcements/how-to-make-fish-shine/

Related Journal Article

http://dx.doi.org/10.1371/journal.pgen.1007402

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.