• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New method measures single molecules from nanoliter of blood in real time

Bioengineer by Bioengineer
October 5, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Giovanni Maglia, University of Groningen

University of Groningen scientists, led by Associate Professor of Chemical Biology Giovanni Maglia, have designed a nanopore system that is capable of measuring different metabolites simultaneously in a variety of biological fluids, all in a matter of seconds. The electrical output signal is easily integrated into electronic devices for home diagnostics. The results were published in Nature Communications.

Measuring many metabolites or drugs in the body is complicated and time-consuming, and real-time monitoring is not usually possible. The ionic currents that pass through individual nanopores are emerging as a promising alternative to standard biochemical analysis. Nanopores are already integrated into portable devices to determine DNA sequences. 'But it is basically impossible to use these nanopores to specifically identify small molecules in a complex biological sample', says Maglia.

Transducer

A year ago (1), Maglia demonstrated how to use nanopores to identify the 'fingerprints' of proteins and peptides, and even to distinguish polypeptides which differ by one amino acid. Now, he has adapted this system to identify small molecules in biological fluids. To do so, he used a larger cylindrical-shaped nanopore to which he added substrate-binding proteins. 'Bacteria make hundreds of these proteins to bind substrates in order to transport them into the cells. These proteins have specificities that have evolved over billions of years.'

Maglia adapts the binding proteins to fit inside the nanopore. If a protein then binds to its substrate, it changes its conformation. This, in turn, changes the current passing through the pore. 'We are using the binding protein as an electrical transducer to detect the single molecules of the substrate', explains Maglia. The pores can be incorporated into a standard device which analyzes the current of hundreds of individual pores simultaneously. To this end, the scientists are working with Oxford Nanopores, the world leader in this kind of technology.

Blood, sweat, and urine

By adding two different substrate-binding proteins that are specific to glucose and the amino acid asparagine, Maglia was able to get a reading for both from a fraction of a single drop of blood in under a minute. 'Real-time glucose sensors are available, but the asparagine analysis normally takes days,' he says. Maglia's method works with blood, sweat, urine or any other bodily fluid, without needing sample preparation. The substrate-binding proteins are on one side of the membrane and the sample is on the other. 'As the pores are very narrow, the mixing only happens inside the nanopore, so the system can operate continuously,' he explains.

The challenge now is to identify suitable binding proteins for more substrates, including drugs. Maglia's group has found ten so far. 'But they need to be tuned to work with the pore. And at the moment, we don't really understand the mechanism for this, so finding the right proteins is a matter of trial and error,' he says. Maglia is looking for opportunities to set up a company which will provide these binding proteins. 'If we can create a system with proteins that are specific to hundreds of different metabolites, we will have created a truly disruptive new technology for medical diagnostics.'

##

Reference: Nicole S. Galenkamp, Misha Soskine, Jos Hermans, Carsten Wloka and Giovanni Maglia: Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores. Nature Communications 5 October 2018.

(1) Huang et al, Nature Communications, 16 October 2016, DOI 10.1038/s41467-017-01006-4

Media Contact

Rene Fransen
[email protected]
@univgroningen

http://www.rug.nl/corporate/index

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-06534-1

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.