• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 23, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genome of sea lettuce that spawns massive ‘green tides’ decoded

Bioengineer by Bioengineer
October 3, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of Olivier De Clerck

Sea lettuce, a fast-growing seaweed that spawns massive "green tides," is a prolific thief, according to research that for the first time sequenced the genome of a green seaweed.

An international team including Rutgers scientists found 13 cases where the sea lettuce Ulva mutabilis stole genes from bacteria. Remarkably, this ubiquitous seaweed expanded more than half of the pilfered genes – creating so-called "gene families" – and used some of them to adapt to stresses such as excessive light, high salinity and dehydration to become a dominant intertidal seaweed, according to study co-author Debashish Bhattacharya, distinguished professor at Rutgers University-New Brunswick. Ulva also lives with bacteria and relies on them to gain its multicellular form. Both stolen genes and intact bacteria that live in symbiosis with Ulva play key roles in the seaweed's success.

Ulva's rapid growth is not all negative. Indeed, it can be exploited to produce biofuels, generate protein for animal feed, remove excessive nutrients in aquaculture and serve as a seaweed crop, according to a study published online in Current Biology.

"Ulva provides insights into how evolution acts on genomes to modify the biology of organisms," said Bhattacharya, who works in the Department of Biochemistry and Microbiology in the School of Environmental and Biological Sciences. "Learning these rules will be crucial to understanding what traits define winners and losers under climate change, allowing us to better predict future trends among seaweed, algae and other life at the base of the food chain."

Fatima Foflonker, a post-doctoral researcher, and Bhattacharya were part of an international team that analyzed Ulva's recently determined genome sequence. They studied the sea lettuce to gain insights into the growth and reproduction of multicellular green algae. Seaweeds evolved independently from land plants, and the research found that the mechanisms underlying their growth and development are distinct.

Ulva species are widely found along tropical and temperate coasts, and several species penetrate freshwater streams and lakes. In high-nutrient conditions, spectacular blooms of Ulva (green tides) often cover several hundred kilometers of coastal waters. Beached algae may reach one million tons and smother entire coastlines. Although not toxic, green tides have killed people when blooms die and generate hydrogen sulfide.

The Ulva genome offers new opportunities to understand coastal and marine ecosystems and the evolution of green seaweeds. Comparison of Ulva species that bloom and don't bloom may boost understanding of the molecular mechanisms underpinning growth and reproduction in response to environmental conditions, the study says.

###

Media Contact

Todd Bates
[email protected]
848-932-0550
@RutgersU

http://www.rutgers.edu

Original Source

https://news.rutgers.edu/genome-sea-lettuce-spawns-massive-%E2%80%9Cgreen-tides%E2%80%9D-decoded/20181001#.W7KEbGhKi73 http://dx.doi.org/10.1016/j.cub.2018.08.015

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Wolves and Dogs: A Love for New Experiences

January 23, 2026
blank

Stigmasterol Boosts Testicular and Sperm Function in Mice

January 23, 2026

Boosting Soybean Salt Tolerance and Oil Content

January 23, 2026

Mice Use Visual Discrimination in Distractor Elimination Study

January 23, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    156 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    79 shares
    Share 32 Tweet 20
  • Digital Privacy: Health Data Control in Incarceration

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shropshire Metatarsal Fracture Study: 2020-2023 Insights

Optimizing Lubricants for Bicycle Chain Efficiency

Ferroptosis in Cancer: Metabolism and Therapeutic Opportunities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.