• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Salk’s Janelle Ayres receives NIH Pioneer Award for novel approaches to infectious disease

Bioengineer by Bioengineer
October 2, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Salk Institute

LA JOLLA–(October 2, 2018) Associate Professor Janelle Ayres has been awarded a 2018 NIH Director's Pioneer Award by the National Institutes of Health for her innovative research into host-pathogen interactions that promote the health of the host.

The highly sought-after grant, which awards $3.5 million in direct costs over five years, "supports scientists with outstanding records of creativity pursuing new research directions to develop pioneering approaches to major challenges in biomedical and behavioral research," according to the NIH.

"This prestigious award is a testament to Janelle's groundbreaking vision of novel solutions in a time of increased challenges posed by infectious disease and antibiotic resistance," says Salk President Rusty Gage. "Her work is paving the way for entirely new approaches to improve human health."

As a member of Salk's NOMIS Center for Immunobiology and Microbial Pathogenesis, Ayres uses an approach grounded in mathematical and evolutionary predictions to understand how bacteria have evolved ways to promote our health. She has published pivotal studies showing that in addition to the immune system, which kills pathogens, animals have what she calls the cooperative defense system, which protects them from infectious diseases by alleviating physiological damage without killing pathogens. By understanding the underlying mechanisms behind this cooperative defense system, her work points to a new way to treat infectious and non-infectious diseases (such as pathologies associated with cancer and aging) without killing microbes–and therefore without relying on antibiotics, which drive dangerous microbial resistance.

Ayres has uncovered a number of discoveries in this area. In 2015, her lab found a strain of E. coli bacteria in mice that was capable of improving the animals' tolerance to infections of the lungs and intestines by preventing wasting–a common and potentially deadly loss of muscle tissue that occurs in serious infections. In 2017, her team discovered that Salmonella bacteria can overcome a host's natural aversion to food when sick, which results in more nutrients for the bacteria and a gentler infection for the host. Additionally, she recently published a paper in Cell that described how giving mice dietary iron supplements enabled them to survive a normally lethal bacterial infection and resulted in later generations of those bacteria being less virulent.

"Exactly as its name implies, the NIH high-risk, high-reward research program supports ideas that might be too bold for traditional funding mechanisms," says Ayres. "I am honored to have my work placed in this category because high-risk projects have the most potential for both science and humankind."

Ayres, who holds the Helen McLoraine Developmental Chair at Salk, recently received a $1 million grant from the W. M. Keck Foundation to investigate new approaches to tackle deadly bacterial and viral infections, including sepsis and influenza. She is also the recipient of the prestigious Blavatnik National Award for Young Scientists, a Searle Scholarship and a Ray Thomas Edward Foundation award.

Ayres earned her PhD in microbiology and immunology from Stanford University School of Medicine.

###

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
[email protected]
858-453-4100
@salkinstitute

Salk Institute for Biological Studies

Original Source

https://www.salk.edu/news-release/salks-janelle-ayres-receives-nih-pioneer-award-for-novel-approaches-to-infectious-disease/

Share12Tweet8Share2ShareShareShare2

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.