• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

‘Turbocharging’ photosynthesis in corn hikes yield

Bioengineer by Bioengineer
October 1, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ITHACA, N.Y.- Scientists from the Boyce Thompson Institute (BTI) and Cornell University have boosted a carbon-craving enzyme called RuBisCO to turbocharge photosynthesis in corn. The discovery promises to be a key step in improving agricultural efficiency and yield, according to new research in Nature Plants, Oct. 1.

Increased RuBisCO assists corn's biological machinery used during photosynthesis to incorporate atmospheric carbon dioxide into carbohydrates.

"Every metabolic process – like photosynthesis – has the equivalent of traffic lights or speed bumps," said plant biologist David Stern, president of the Cornell-affiliated BTI. "RuBisCO is often the limiting factor in photosynthesis. With increased RuBisCO, though, this well-known speed bump is lowered, leading to improved photosynthetic efficiency."

RuBisCO does have a formal, scientific name. It's Ribulose-1,5-bisphosphate carboxylase/oxygenase, an enzyme that helps convert carbon dioxide into sugar. It's generally accepted, said Stern, that it's the Earth's most abundant enzyme.

But for the world of commercial agriculture and corn's C4 (four-carbon compound) photosynthesis system, RuBisCO works slowly.

BTI researchers found a way to overexpress a key chaperone enzyme called RuBisCO Assembly Factor 1, or RAF1, to help make more RuBisCO.

"It needs help from other proteins to assemble itself," said lead author Coralie Salesse, a Cornell doctoral candidate in the field of plant biology.

With the chaperone enzyme, the scientists in effect lowered a different speed bump – one that limits the rate at which RuBisCO can attain the right biological architecture – leading the plants to accumulate more of it.

The exact mechanism of how RuBisCO was assembled had been a mystery for many years, until the RAF1 and RAF2 proteins were discovered, said Salesse.

Salesse conducted research at the laboratories of Robert Sharwood and Florian Busch at the Australian National University and at the laboratory of Steven Long, University of Illinois. Salesse found that increasing RuBisCO causes greenhouse-grown plants to flower sooner, grow taller and produce more biomass.

"Corn is an important but land and energy-intensive crop, and reducing its environmental footprint is important. Just in this country, corn is grown on some 90 million acres, and nearly 15 billion bushels were produced in recent years," said Stern, Cornell adjunct professor of plant biology. He explained there are different approaches to increasing biomass per acre, including boosting photosynthesis, which could increase the weight of each ear of corn and thus yield per acre.

Stern noted – with this finding – that the same approach may have promise to improve yields in other C4 crops, such as sorghum and sugarcane.

"As we move from the greenhouse and into the fields, we hope to eventually observe improved growth and yield in production varieties," he said. "Turbocharging RuBisCO has the potential to provide a foundation for profound effects on the corn plant's ability to mature and produce biomass, especially when combined with other approaches."

###

Other authors of "Overexpression of Rubisco Subunits With RAF1 Increases Rubisco Content in Maize" are BTI's Viktoriya Bardal, who was an intern in the Stern laboratory, and Johannes Kromdijk from the University of Illinois. Funding was provided by the U.S. Department of Agriculture and the Mario Einaudi Center for International Studies.

Media Contact

Jeff Tyson
[email protected]
607-793-5769
@cornell

http://pressoffice.cornell.edu

http://news.cornell.edu/stories/2018/10/turbocharging-photosynthesis-corn-hikes-yield

Related Journal Article

http://dx.doi.org/10.1038/s41477-018-0252-4

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.