• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neglected baby beetles evolve greater self-reliance

Bioengineer by Bioengineer
September 28, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: tomhouslay.com

In gardens, parks and woods across the UK, the Sexton burying beetle Nicrophorus vespilloides quietly buries dead mice and other small vertebrates to create edible nests for their young.

Most parents remove the animal's hair and slash the flesh of the carcass to help their newly-hatched larvae crawl inside. Typically they also stay on to defend and feed them, but levels of care vary and larvae can survive without their parents.

In a laboratory in Cambridge's Zoology Department, researchers exploited the insect's unusual natural history to establish two starkly different experimental populations and explore how parental behaviour drives evolution.

The study, published on 28 September in the journal Nature Communications, shows that larvae evolve distinctive adaptations in response to the different levels of parental care.

The scientists behind the research exposed hundreds of beetles to two levels of parental care, for 13 generations. In a No Care environment, parents were removed as soon as they had prepared their mouse carcass nest but before their larvae had hatched. By contrast, in the Control environment, the parents were allowed to care for their young until they were ready to leave home.

The researchers found that when parents fed meat to their babies' mouth-to-mouth, the larvae evolved relatively smaller mandibles. These horizontally-aligned bladelike jaws play a vital role in the larva's life, enabling them to enter the carcass and feed on the flesh once inside, but they are less important when parents help their young to feed.

"By contrast, when the parents were removed from their young and larvae were forced to self-feed, the larvae evolved significantly larger jaws to compensate for the lack of help", said Benjamin Jarrett, who led the study."

Many previous studies have shown that social interactions in animals can drive evolutionary change through arms races which cause traits to become increasingly exaggerated. But animals also cooperate and it has been argued that when one individual contributes more, this can diminish traits in the less active social partner. Rarely, however, has direct evidence of this process been obtained.

So what are the larval mandibles like in natural populations, where the level of parental care is very variable from family to family? Here the researchers found that larval jaws are consistently large on average, regardless of the size of the larva.

"They seem to be anticipating the worst possible scenario of receiving no help at all. This looks like a conservative bet-hedging strategy for survival," said Jarrett.

"Whether parents eventually decide to stay or go, the larva are equipped with large jaws and so can fend for themselves if necessary."

The laboratory's experimental populations of beetles are continuing to evolve and are now in the 35th generation of experiencing different levels of parental care.

"Our ongoing research investigates the importance of the social environment in evolution. We are watching the way that evolution unfolds in these experimental populations and they constantly teach and surprise us", said Professor Rebecca Kilner, senior author of the paper.

"The better our understanding of how evolution works, the better able we are to predict how animals will evolve in a changing world".

###

Media Contact

Tom Almeroth-Williams
[email protected]
01-223-761-673
@Cambridge_Uni

http://www.cam.ac.uk

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-06513-6

Share12Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.