• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A role for Scn5a missplicing in cardiac arrhythmias in myotonic dystrophy

Bioengineer by Bioengineer
September 28, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Baylor College of Medicine

A team of researchers at Baylor College of Medicine reveals new insights into what can be causing life-threatening cardiac-related events in myotonic dystrophy type 1(DM1). Published in the Journal of the American Heart Association, the study shows that reproducing in mice the missplicing of gene Scn5a observed in patients with the condition recapitulates defects in cardiac function present in the patients. The findings highlight a non-mutational mechanism that is relevant to DM1 and possibly other types of arrhythmias and open the possibility for novel interventions.

"Cardiac events in DM1 are the second-leading cause of death in the disease. More than 50 percent of patients with DM1 have cardiac electric conduction defects and arrhythmias, but it is not clear what causes them," said corresponding author Dr. Thomas A. Cooper, professor of pathology & immunology, of molecular and cellular biology and of molecular physiology and biophysics at Baylor College of Medicine.

DM1 is a progressive multi-systemic disease and the most common form of muscular dystrophy in adults, affecting 1 in 8,000 individuals worldwide. A main characteristic of the disease is the disruption of a process called alternative splicing.

During normal development, alternative splicing mediates the switch of protein forms expressed in the fetus to different forms of the same protein expressed in the adult. In DM1, a subset of genes fails to undergo the normal alternative splicing transition to the adult form. Consequently, adult tissues express fetal forms of some proteins that cannot fulfill the functions required in an adult tissue.

One of the proteins that is misspliced in DM1 is Scn5a, a sodium channel that is strongly expressed in heart muscle and is critical for normal electrical activity of the heart. Malfunctioning sodium channel proteins in cardiomyocytes are associated with arrhythmias and cardiac dysfunction contributing to sudden cardiac death. Although these studies show an association between fetal forms of Scn5a and cardiac defects in DM1, they do not indicate that one causes the other.

To determine whether fetal forms of Scn5a can cause cardiac defects similar to those observed in DM1, Cooper and his colleagues expressed the fetal forms in adult mice and then extensively characterized cardiac function.

Missplicing Scn5a alters cardiac function

Using CRISPR technology, Cooper and his colleagues removed the gene segment containing the adult form of Scn5a. Consequently, the developing mice expressed fetal Scn5a when they became adults. The researchers then applied a variety of assays to measure alterations of the electrical conduction characteristics of the heart, including conduction velocity and susceptibility to arrhythmias.

"We found that the hearts of mice expressing the fetal form of Scn5a behaved differently than those of normal mice," said first author Paul D. Pang, predoctoral fellow in Baylor's Integrative Molecular and Biomedical Sciences Program. "Conduction velocity was slower and arrhythmias were more likely to occur in the hearts expressing fetal Scn5a."

"We reproduced in mice the defects in heart function observed DM1 by making this change in alternative splicing, which supports the hypothesis that alternative splicing of Scn5a is a contributing factor in the cardiac problems associated with the disease and maybe also in arrhythmias linked to other conditions," said Cooper, who also is the S. Donald Greenberg and R. Clarence and Irene H. Fulbright Professor and a member of the Dan L Duncan Comprehensive Cancer Center at Baylor."

Next, the researchers plan to explore the possibility that changing the fetal form of Scn5a back to the adult form would help reinstate normal heart function.

###

Other contributors of this work include Katherina M. Alsina, Shuyi Cao, Amrita B. Koushik and Xander H.T. Wehrens, all at Baylor College of Medicine.

This study was funded by the National Institutes of Health (T32HL07676, F31HL140879, R01HL045565, R01AR045653, R01AR060733, R01HL089598, R01HL091947 and R01HL117641), the Muscular Dystrophy Foundation, the American Heart Association (13EIA14560061) and Saving Tiny Hearts Foundation.

Media Contact

Allison Mickey
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Original Source

https://www.bcm.edu/news http://dx.doi.org/10.1161/JAHA.118.010393

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.