• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Observing the development of a deep-sea greenhouse gas filter

Bioengineer by Bioengineer
September 28, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MARUM – Centre for Marine Environmental Sciences, University of Bremen

Large quantities of the greenhouse gas methane are stored in the seabed. Fortunately, only a small fraction of the methane reaches the atmosphere, where it acts as a climate-relevant gas, as it is largely degraded within the sediment. This degradation is carried out by a specialized community of microbes, which removes up to 90 percent of the escaping methane. Thus, these microbes are referred to as the "microbial methane filter". If the greenhouse gas were to rise through the water and into the atmosphere, it could have a significant impact on our climate.

But not everywhere the microbes work so efficiently. On sites of the seafloor that are more turbulent than most others – for example gas seeps or so-called underwater volcanoes -, the microbes remove just one tenth to one third of the emitted methane. Why is that? Emil Ruff and his colleagues from the Max Planck Institute for Marine Microbiology and the University of Bremen aimed to answer this question.

Methane consumption around a mud volcano

In the North Sea off Norway at 1250 meters water depth lies the Håkon Mosby mud volcano. There, warm mud from deeper layers rises to the surface of the seafloor. In a long-term experiment, Ruff and his colleagues were able to film the eruption of the mud, take samples and examine them closely. "We found significant differences in the different communities on-site. In fresh, recently erupted mud there were hardly any organisms. The older the mud, the more life it contained", says Ruff. Within a few years after the eruption, the number of microorganisms as well as their diversity increased tenfold. Also, the metabolic activity of the microbial community increased significantly over time. While there were methane consumers even in the young mud, efficient filtering of the greenhouse gas seems to occur only after decades.

"This study has given us new insights into these unique communities," says Ruff. "But it also shows that these habitats need to be protected. If the methane-munchers are to continue to help remove the methane, then we must not destroy their habitats with trawling and deep-sea mining. These habitats are almost like a rainforest – they take decades to grow back after a disturbance. "

International deep-sea research

Antje Boetius, co-author of the study, director of the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI) and head of the research group for deep-sea ecology and technology at the Max Planck Institute in Bremen and the AWI, emphasizes the importance of national and international research cooperations to achieve such research results: "This study was only possible through the long-term cooperation between the AWI, the MARUM – Center for Environmental Sciences of the University of Bremen and the Max Planck Institute for Marine Microbiology with international partners in Norway, France and Belgium. Through various EU projects, we have been able to use unique deep-sea technologies to study the Håkon Mosby mud volcano and its inhabitants in great detail", says Boetius.

###

Background:

Håkon Mosby mud volcano

Named after the Norwegian ocea¬no¬gra¬pher Hå¬kon Mos¬by, this mud volcano was discovered in 1990 by an international team of researchers in the Barents Sea at a depth of 1250 meters. Besides water and mud, also gas emerges from the center of the volcano, which covers approximately one square kilometre. The gas, which rises from about two kilometres below the sea floor, consists of 99 percent methane.

Hå¬kon Mos¬by is a very flat mud volcano with a maximum height of ten meters. Surrounding the crater are three distinct circular zones: the center, the middle and the outer ring. Entirely different communities inhabit these three zones, yet they have one thing in common: methane is the main food source of the organisms on site. Most of the gas is consumed in the outer zone, which can be explained as follows: In the central and middle zone large quantities of methane are available, however there is a lack of oxygen or sulfate required to oxidize the methane. In the outer zone, the situation is different: Tubeworms, which grow up to 60 cm deep into the seafloor, actively pump seawater and thereby sulfate into deeper layers of the sediment. Thanks to these "living pumps", organisms living at their "roots" can use methane even in regions where that normally wouldn't be possible. There, hardly any gas escapes to the water column. This clearly shows how the complex interaction of communities on and in the ocean floor is a prerequisite for the development of an efficient biological filter for a greenhouse gas.

Related Links:

Video footage from Håkon Mosby Mud Volcano: https://www.youtube.com/watch?v=UzYFzpCui2U

Earlier press release on HMMV: https://www.mpi-bremen.de/en/Research-at-the-Haakon-Mosby-Mud-Volcano.html

Original publication:

S. E. Ruff, J. Felden, H. R. Gruber-Vodicka, Y. Marcon, K. Knittel, A. Ramette, A. Boetius: In situ development of a methanotrophic microbiome in deep-sea sediments. The ISME Journal. Published online 28 August 2018.

https://www.nature.com/articles/s41396-018-0263-1

https://doi.org/10.1038/s41396-018-0263-1

Media Contact

Dr. Emil Ruff
[email protected]
403-210-7457

http://www.mpi-bremen.de

Original Source

https://www.mpi-bremen.de/en/Page3234.html http://dx.doi.org/10.1038/s41396-018-0263-1

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.