• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Following the path of chemicals through the soil

Bioengineer by Bioengineer
September 27, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Janne Hansen

Maybe the genetic test report your doctor ordered says your DNA contains many "variants of unknown significance." Currently, up to 70 percent of such reports are negative or inconclusive. But suppose at a later date a researcher discovers one of those changes causes a disease? You may be able to take preventive steps or receive early treatment–but how will you learn this new piece of information? You can't even be sure your doctor will find out about it.

A scientist in the Division of Genomic Diagnostics (DGD) at Children's Hospital of Philadelphia (CHOP) proposes a new model to generate ongoing automated updates to account for new evidence–and enable genetic counselors and physicians to better communicate clinically relevant information to patients and families, not just when the test results are initially reported, but for years to come as new knowledge accumulates.

"Since the Human Genome Project was completed, the flood of new genetic information and the accelerated pace of discovery represent a paradigm shift in the practice of clinical genetics," said Mahdi Sarmady, PhD, a genome informatics scientist and Director of Bioinformatics in the DGD. He points out, for instance, that clinical sequencing is increasingly being incorporated in pediatric clinics as a routine diagnostic tool.

To enable faster, more systematic use of sequencing results, Sarmady and Ahmad Abou Tayoun, PhD, a former CHOP geneticist now at Al Jalila Children's Specialty Hospital in Dubai, U.A.E., propose a new model for genomic interpretation and continuous reanalysis in a Viewpoint article published online today in JAMA Pediatrics.

Under the traditional approach in clinical genetics, a physician or genetic counselor would order a laboratory test on a specific gene to determine whether a patient carried a known mutation linked to a genetic disease. Now labs offer gene panels to test all known genes associated with a specific disorder, or exome sequencing, to search all protein-coding genes in a person's DNA.

But managing and interpreting the fire hose of data provided by new high-throughput sequencing methods has led to a bottleneck in keeping up with and delivering useful information to patients and clinicians.

The proposed model outlines a two-way exchange of information between laboratories and the clinic. Automated algorithms would collect new evidence from scientific literature and various knowledge bases of gene variants linked to specific disorders, and would notify a clinician that a patient's previously discovered variant could be pathogenic. A physician or genetic counselor, for their part, could use an app in the platform to order reanalysis and to enter the most up-to-date phenotypic information on a patient's health status–adding details about the course of a genetic disease, to inform other researchers and clinicians.

"Instead of a one-time test result, there would be continuous, systematic interaction between the clinic and the genetic testing lab, and reanalysis of changing data," said Sarmady. "This could enable clinicians to provide better diagnoses and change treatment plans for their patients as new information becomes available, and help advance the promise of precision medicine."

###

In addition to his CHOP position, Sarmady also is an Assistant Professor of Pathology and Laboratory Medicine in the Perelman School of Medicine at the University of Pennsylvania.

Mahdi Sarmady and Ahmad Abou Tayoun, "Need for Automated Interactive Genomic Interpretation and Ongoing Reanalysis," JAMA Pediatrics, online Oct. 1, 2018. http://doi.org/10.1001/jamapediatrics.2018.2675

About Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 546-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Media Contact

Lis Wollesen de Jonge
[email protected]
45-24-94-05-50
@aarhusuni

http://www.au.dk

Original Source

http://dca.au.dk/en/current-news/news/show/artikel/forskere-foelger-sporene-af-kemiske-stoffer-i-jord/ http://dx.doi.org/10.1038/s41598-018-29306-9

Share15Tweet8Share2ShareShareShare2

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Syndrome Score Validated in Teens

Low PDA Shunt Linked to Premature Infant Risks

Hydrocortisone Use in Extremely Preterm Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.